Cho hình chóp \(S.ABC\). Đáy \(ABC\) là tam giác vuông cân tại \(B,\,\,AC = 2a\). Đường thẳng \(SA\) vuông góc với mặt phẳng \(\left( {ABC} \right)\), \(SA = a\). Khi đó, cosin của góc tạo bởi \(SC\) và mặt phẳng \(\left( {SAB} \right)\) có giá trị là:
Suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiTa có: \(\left\{ \begin{array}{l}BC \bot AB\,\,\left( {gt} \right)\\BC \bot SA\,\,\left( {SA \bot \left( {ABC} \right)} \right)\end{array} \right. \Rightarrow BC \bot \left( {SAB} \right)\).
\( \Rightarrow SB\) là hình chiếu vuông góc của \(SC\) lên \(\left( {SAB} \right)\).
\( \Rightarrow \angle \left( {SC;\left( {SAB} \right)} \right) = \angle \left( {SC;SB} \right) = \angle BSC\).
Vì \(BC \bot \left( {SAB} \right)\,\,\left( {cmt} \right) \Rightarrow BC \bot SB\) \( \Rightarrow \Delta SBC\) vuông tại \(B\)
Tam giác \(ABC\) vuông cân tại \(B\) \( \Rightarrow AB = BC = \dfrac{{AC}}{{\sqrt 2 }} = \dfrac{{2a}}{{\sqrt 2 }} = a\sqrt 2 \).
Xét tam giác vuông \(SAB\) có: \(SB = \sqrt {S{A^2} + A{B^2}} = \sqrt {{a^2} + 2{a^2}} = a\sqrt 3 \).
\( \Rightarrow SC = \sqrt {S{B^2} + C{B^2}} = a\sqrt 5 \)
Xét tam giác vuông \(SBC\) có: \(\cos \angle BSC = \dfrac{{SB}}{{SC}} = \dfrac{{a\sqrt 3 }}{{a\sqrt 5 }} = \sqrt {\dfrac{3}{5}} = \dfrac {\sqrt{15}}{5}\).
Chọn A.
Đề thi giữa HK2 môn Toán 11 năm 2021-2022
Trường THPT Nguyễn Công Trứ