Có tất cả 120 cách chọn 3 học sinh từ nhóm n (chưa biết) học sinh. Số n là nghiệm của phương trình nào sau đây:
Chính xác
Xem lời giải
Suy nghĩ và trả lời câu hỏi trước khi xem đáp án
ATNETWORK
Chủ đề: Đề thi Học Kỳ/Giữa Kỳ
Môn: Toán Lớp 11
Lời giải:
Báo saiSố cách chọn 2 học sinh từ nhóm n học sinh là:
\(C_n^1.C_n^2.C_n^3\)\( = \dfrac{{n!}}{{\left( {n - 1} \right)!}}.\dfrac{{n!}}{{2!\left( {n - 2} \right)!}}.\dfrac{{n!}}{{3!\left( {n - 3} \right)!}} \)\(= \dfrac{1}{6}n\left( {n - 1} \right)\left( {n - 2} \right)\)
Theo bài ra ta có 120 cách lựa chọn nên:
\(\dfrac{1}{6}n\left( {n - 1} \right)\left( {n - 2} \right) = 120\)\( \Leftrightarrow n\left( {n - 1} \right)\left( {n - 2} \right) = 720\)
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
Đề thi giữa HK1 môn Toán 11 năm 2020
Trường THPT Trần Hưng Đạo
27/11/2024
374 lượt thi
0/30
Bắt đầu thi
ADMICRO
YOMEDIA
ZUNIA9