Đội tuyển học sinh giỏi môn toán của trường THPT Kim Liên gồm có: \(5\) học sinh khối \(10\); \(5\) học sinh khối \(11\); \(5\) học sinh khối \(12\). Chọn ngẫu nhiên \(10\) học sinh từ đội tuyển đi tham dự kì thi \(AMC\). Có bao nhiêu cách chọn được học sinh của cả ba khối và có nhiều nhất hai học sinh khối \(10\) ?
Chính xác
Xem lời giải
Suy nghĩ và trả lời câu hỏi trước khi xem đáp án
ATNETWORK
Chủ đề: Đề thi Học Kỳ/Giữa Kỳ
Môn: Toán Lớp 11
Lời giải:
Báo saiTH1 : Đội tuyển gồm 1 học sinh khối 10 và 9 học sinh của 2 khối 11 và khối 12
Số cách chọn là : \(C_5^1.C_{10}^9 = 50\) cách
TH2 : Đội tuyển gồm 2 học sinh khối 10 và 8 học sinh của 2 khối 11 và khối 12
Số cách chọn là : \(C_5^2.C_{10}^8 = 450\) cách
Vậy có \(450 + 50 = 500\) cách chọn thỏa mãn yêu cầu đề bài.
Chọn B
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
Đề thi HK1 môn Toán 11 năm 2021-2022
Trường THPT Phan Bội Châu
27/11/2024
78 lượt thi
0/40
Bắt đầu thi
ADMICRO
YOMEDIA
ZUNIA9