Giải phương trình: \(2x - \dfrac{{2{x^2}}}{{x + 3}} = \dfrac{{4x}}{{x + 3}} + \dfrac{2}{7}\)
Chính xác
Xem lời giải
Suy nghĩ và trả lời câu hỏi trước khi xem đáp án
ATNETWORK
Chủ đề: Đề thi Học Kỳ/Giữa Kỳ
Môn: Toán Lớp 8
Lời giải:
Báo saiĐiều kiện xác định: \(x+3\ne 0\), tức là \(x \ne - 3\)
Quy đồng mẫu thức:
\(\dfrac{{2x.7.\left( {x + 3} \right)}}{{7.\left( {x + 3} \right)}} - \dfrac{{2.7.{x^2}}}{{7.\left( {x + 3} \right)}} \)\(\,= \dfrac{{7.4.x}}{{7.\left( {x + 3} \right)}} + \dfrac{{2\left( {x + 3} \right)}}{{7\left( {x + 3} \right)}}\)
⇒ \(14x\left( {x + 3} \right) - 14{x^2}= 28x + 2\left( {x + 3} \right)\)
⇔ \( 14{x^2} + 42x - 14{x^2}= 28x + 2x + 6\)
⇔ \(42x - 30x = 6\)
⇔\(12x = 6\)
⇔ \(x = \dfrac{6}{{12}} \)
⇔ \(x = \dfrac{1}{2}\) (thỏa mãn ĐKXĐ)
Vậy phương trình có nghiệm \(x =\dfrac{1}{2}\).
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
ADMICRO
YOMEDIA
ZUNIA9