Giải phương trình \(\cos 2x + \sin 2x = \sqrt 2 \cos x\) .
Suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiTa có: \(\cos 2x + \sin 2x = \sqrt 2 \cos x\)
\(\begin{array}{l}
\cos 2x + \sin 2x = \sqrt 2 \cos x\\
\Leftrightarrow \sqrt 2 \cos \left( {2x - \frac{\pi }{4}} \right) = \sqrt 2 \cos x\\
\Leftrightarrow \cos \left( {2x - \frac{\pi }{4}} \right) = \cos x\\
\Leftrightarrow \left[ \begin{array}{l}
2x - \frac{\pi }{4} = x + k2\pi \\
2x - \frac{\pi }{4} = - x + k2\pi
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
x = \frac{\pi }{4} + k2\pi \\
3x = \frac{\pi }{4} + k2\pi
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
x = \frac{\pi }{4} + k2\pi \\
x = \frac{\pi }{{12}} + \frac{{k2\pi }}{3}
\end{array} \right.
\end{array}\)
Chọn đáp án D.
Đề thi HK1 môn Toán 11 năm 2021-2022
Trường THPT Trần Đại Nghĩa