Giải phương trình: \( \dfrac{x+3}{x+1}+\dfrac{x-2}{x} = 2\).
Suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiĐiều kiện xác định: \(x+1\ne 0;x\ne 0\), tức là \(x \ne 0; x\ne-1\).
Quy đồng mẫu thức:
\(\dfrac{{x\left( {x + 3} \right)}}{{x\left( {x + 1} \right)}} + \dfrac{{\left( {x - 2} \right)\left( {x + 1} \right)}}{{x\left( {x + 1} \right)}}\)\(\, = \dfrac{{2x\left( {x + 1} \right)}}{{x\left( {x + 1} \right)}}\)
⇒ \(x\left( {x + 3} \right) + \left( {x - 2} \right)\left( {x + 1} \right) \)\(\,= 2x\left( {x + 1} \right)\)
\(\Leftrightarrow {x^2} + 3{\rm{x}} + {x^2} - 2{\rm{x}} + x - 2 \)\(\,= 2{{\rm{x}}^2} + 2{\rm{x}}\)
\(\Leftrightarrow 2{{\rm{x}}^2} + 2{\rm{x}} - 2\, - 2{{\rm{x}}^2} - 2{\rm{x}} = 0\)
\(\Leftrightarrow 0x = 2\) (vô nghiệm).
Vậy phương trình đã cho vô nghiệm.
Đề thi giữa HK2 môn Toán 8 năm 2021-2022
Trường THCS Thăng Long