Phương trình \(\cos x = \dfrac{{13}}{{14}}\) trên \(\left[ {\dfrac{{ - \pi }}{2};2\pi } \right]\) có bao nhiêu nghiệm:
Suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo sai\(\cos x = \dfrac{{13}}{{14}} \)\(\Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = \arccos \dfrac{{13}}{{14}} + k2\pi }\\{x = - \arccos \dfrac{{13}}{{14}} + k2\pi }\end{array}} \right.(k \in \mathbb{Z})\)
Do \(x \in \left[ {\dfrac{{ - \pi }}{2};2\pi } \right]\) nên ta có
Với \(x = \arccos \dfrac{{13}}{{14}} + k2\pi \)\(\Rightarrow \dfrac{{ - \pi }}{2} \le \arccos \dfrac{{13}}{{14}} + k2\pi \le 2\pi \)\( \Rightarrow k = 0\)
Với \(x = - \arccos \dfrac{{13}}{{14}} + k2\pi \)\( \Rightarrow \dfrac{{ - \pi }}{2} \le - \arccos \dfrac{{13}}{{14}} + k2\pi \le 2\pi \)\(\Rightarrow k = 0,k = 1\)
Chọn B
Đề thi giữa HK1 môn Toán 11 năm 2022-2023
THPT Nguyễn Thị Minh Khai