Quan sát Hình 2, có \(IK//EF\). Hãy tính giá trị của \(x\)?
Suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo sai* Ta có: \(\angle zEO + \angle OEF = {180^0}\) (hai góc kề bù)
\(\begin{array}{l} \Rightarrow {130^0} + \angle OEF = {180^0}\\ \Rightarrow \angle OEF = {180^0} - {130^0}\\ \Rightarrow \angle OEF = {50^0}\end{array}\)
* \(IK//EF\) (giá thiết) \( \Rightarrow \angle OEF = \angle OIK\) (hai góc đồng vị) do đó, \(\angle OIK = {50^0}\)
* Ta có: \(\angle IKO + \angle IKF = {180^0}\) (hai góc kề bù)
\(\begin{array}{l} \Rightarrow \angle IKO + {140^0} = {180^0}\\ \Rightarrow \angle IKO = {180^0} - {140^0}\\ \Rightarrow \angle IKO = {40^0}\end{array}\)
* Xét \(\Delta OIK\) có: \(\angle O + \angle OIK + \angle OKI = {180^0}\) (định lí tổng ba góc trong một tam giác)
\(\begin{array}{l} \Rightarrow x + {50^0} + {40^0} = {180^0}\\ \Rightarrow x + {90^0} = {180^0}\\ \Rightarrow x = {180^0} - {90^0}\\ \Rightarrow x = {90^0}\end{array}\)
Vậy \(x = {90^0}\)
Chọn D.
Đề thi HK1 môn Toán 7 KNTT năm 2022-2023
Trường THCS Trần Hưng Đạo