Số nghiệm trong khoảng \(\left( { - \pi ;5\pi } \right)\) của phương trình \(\left( {\sin x + \dfrac{1}{{\sqrt 3 }}} \right)\cos x = 0\) là
Suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo sai\(\begin{array}{l}
\left( {\sin x + \frac{1}{{\sqrt 3 }}} \right)\cos x = 0\\
\Leftrightarrow \left[ \begin{array}{l}
\sin x + \frac{1}{{\sqrt 3 }} = 0\\
\cos x = 0
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
\sin x = - \frac{1}{{\sqrt 3 }}\\
\cos x = 0
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
x = \arcsin \left( { - \frac{1}{{\sqrt 3 }}} \right) + k2\pi \\
x = \pi - \arcsin \left( { - \frac{1}{{\sqrt 3 }}} \right) + k2\pi \\
x = \frac{\pi }{2} + k\pi
\end{array} \right.
\end{array}\)
Với \(x = \arcsin \left( { - \frac{1}{{\sqrt 3 }}} \right) + k2\pi \) thì:
\(\begin{array}{l}
- \pi < \arcsin \left( { - \frac{1}{{\sqrt 3 }}} \right) + k2\pi < 5\pi \\
\Leftrightarrow - 0,4 < k < 2,59\\
\Rightarrow k \in \left\{ {0;1;2} \right\}
\end{array}\)
Với \(x = \pi - \arcsin \left( { - \frac{1}{{\sqrt 3 }}} \right) + k2\pi \) thì:
\(\begin{array}{l}
- \pi < \pi - \arcsin \left( { - \frac{1}{{\sqrt 3 }}} \right) + k2\pi < 5\pi \\
\Leftrightarrow - 1,1 < k < 1,9\\
\Rightarrow k \in \left\{ { - 1;0;1} \right\}
\end{array}\)
Với \(x = \frac{\pi }{2} + k\pi \) thì:
\(\begin{array}{l}
- \pi < \frac{\pi }{2} + k\pi < 5\pi \\
\Leftrightarrow - \frac{3}{2} < k < \frac{9}{2}\\
\Rightarrow k \in \left\{ { - 1;0;1;2;3;4} \right\}
\end{array}\)
Vậy có tất cả 3+3+6=12 nghiệm thỏa mãn.
Chọn D.
Đề thi giữa HK1 môn Toán 11 năm 2022-2023
Trường THPT Lý Tự Trọng