Tập nghiệm của phương trình \(\frac{1}{x-1}+\frac{2}{x^{2}+x+1}=\frac{3 x^{2}}{x^{3}-1}\) là
Suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiĐK: \(\left\{\begin{array}{l} x-1 \neq 0 \\ x^{2}+x+1 \neq 0 \end{array} \Leftrightarrow\left\{\begin{array}{l} x \neq 1 \\ \left(x+\frac{1}{2}\right)^{2}+\frac{3}{4} \neq 0(l l đ) \end{array} \Leftrightarrow x \neq 1\right.\right.\)
Khi đó
\(\begin{aligned} &\text { e) } \frac{1}{x-1}+\frac{2}{x^{2}+x+1}=\frac{3 x^{2}}{x^{3}-1}\\ &\Leftrightarrow \frac{1}{x-1}+\frac{2}{x^{2}+x+1}=\frac{3 x^{2}}{(x-1)\left(x^{2}+x+1\right)}\\ &\Leftrightarrow \frac{x^{2}+x+1}{(x-1)\left(x^{2}+x+1\right)}+\frac{2(x-1)}{\left(x^{2}+x+1\right)(x-1)}=\frac{3 x^{2}}{(x-1)\left(x^{2}+x+1\right)}\\ &\Leftrightarrow x^{2}+x+1+2 x-2=3 x^{2}\\ &\Leftrightarrow 2 x^{2}-3 x+1=0\\ &\Leftrightarrow\left[\begin{array}{l} x=1 (l)\\ x=\frac{1}{2}(n) \end{array}\right. \end{aligned}\)
Vậy \(S=\left\{\frac{1}{2}\right\}\)