Tìm các giá trị nguyên của \(n\) để \(n + 8\) chia hết cho \(n + 7\)
Chính xác
Xem lời giải
Suy nghĩ và trả lời câu hỏi trước khi xem đáp án
ATNETWORK
Chủ đề: Đề thi Học Kỳ/Giữa Kỳ
Môn: Toán Lớp 6
Lời giải:
Báo saiTa có: \(\frac{{n + 8}}{{n + 7}} = \frac{{n + 7 + 1}}{{n + 7}} = \frac{{n + 7}}{{n + 7}} + \frac{1}{{n + 7}} = 1 + \frac{1}{{n + 7}}\,\,\left( {n \ne - 7} \right)\)
Để \(n + 8\) chia hết cho \(n + 7\) thì \(n + 7\) là ước của \(1\) .
Do đó:
+) \(\begin{array}{l}n + 7 = 1\\n\,\,\,\,\,\,\,\,\, = 1 - 7\\n\,\,\,\,\,\,\,\,\, = - 6\end{array}\)
+) \(\begin{array}{l}n + 7 = - 1\\n\,\,\,\,\,\,\,\,\, = - 1 - 7\\n\,\,\,\,\,\,\,\,\, = - 8\end{array}\)
Vậy \(n = - 6;\,\,\,\,n = - 8\) thì \(n + 8\) chia hết cho \(n + 7\)
Chọn B
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
Đề thi HK2 môn Toán 6 CTST năm 2021-2022
Trường THCS Lương Thế Vinh
08/01/2025
82 lượt thi
0/40
Bắt đầu thi
ADMICRO
YOMEDIA
ZUNIA9