Tìm số nghiệm trong khoảng \(\left( { - \pi ;\pi } \right)\) của phương trình sin x = cos 2x.
Chính xác
Xem lời giải
Suy nghĩ và trả lời câu hỏi trước khi xem đáp án
ATNETWORK
Chủ đề: Đề thi Học Kỳ/Giữa Kỳ
Môn: Toán Lớp 11
Lời giải:
Báo saiTa có : sin x = cos 2x
\(\begin{array}{l} \Leftrightarrow \cos \left( {\dfrac{\pi }{2} - x} \right) = \cos 2x\\ \Leftrightarrow \left[ \begin{array}{l}2x = \dfrac{\pi }{2} - x + k2\pi \\2x = x - \dfrac{\pi }{2} + k2\pi \end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}x = \dfrac{\pi }{6} + \dfrac{{k2\pi }}{3}\\x = - \dfrac{\pi }{2} + k2\pi \end{array} \right.\end{array}\)
Vì \(x \in \left( { - \pi ;\pi } \right)\) nên \(x \in \left\{ {\dfrac{\pi }{6};\dfrac{{5\pi }}{6}; - \dfrac{\pi }{2}} \right\}\)
Vậy có 3 nghiệm thỏa mãn đề bài.
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
ADMICRO
YOMEDIA
ZUNIA9