Tính giá trị \(P = \sin \left( {\alpha + \frac{\pi }{2}} \right) + \cos \left( {3\pi - \alpha } \right) + \cot \left( {\pi - \alpha } \right)\), biết \(\sin \alpha = - \frac{1}{2}\) và \( - \frac{\pi }{2} < \alpha < 0\)?
Suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiTa có :
\(P = \sin \left( {\alpha + \frac{\pi }{2}} \right) + \cos \left( {3\pi - \alpha } \right) + \cot \left( {\pi - \alpha } \right)\)
\( = \sin \left( {\frac{\pi }{2} - \left( { - \alpha } \right)} \right) + \cos \left( {2\pi + \pi - 2\alpha } \right) + \cot \left( {\pi - \alpha } \right)\)
\( = \cos \left( { - \alpha } \right) - \cos \left( { - \alpha } \right) + \cot \left( { - \alpha } \right)\).
\( = \cos \alpha - \cos \alpha - \cot \alpha \)
\( = - \cot \alpha \).
Do \({\cos ^2}\alpha = 1 - {\sin ^2}\alpha = 1 - {\left( { - \frac{1}{2}} \right)^2} = \frac{3}{4} \Rightarrow \cos \alpha = \pm \frac{{\sqrt 3 }}{2}\) .
Mà \( - \frac{\pi }{2} < \alpha < 0 \Rightarrow \cos \alpha > 0\) nên \(\cos \alpha = \frac{{\sqrt 3 }}{2}\).
Suy ra \(\cot \alpha = \frac{{\cos \alpha }}{{\sin \alpha }} = - \sqrt 3 \).
Do đó \(P = - \cot \alpha = \sqrt 3 \) .
Đáp án C
Đề thi giữa HK1 môn Toán 11 KNTT năm 2023 - 2024
Trường THCS Nguyễn Hữu Huân