Tính giới hạn \(\lim \left( {\sqrt {9{n^2} + 2n} - 3n + 8} \right)\) ta được kết quả:
Chính xác
Xem lời giải
Suy nghĩ và trả lời câu hỏi trước khi xem đáp án
ATNETWORK
Chủ đề: Đề thi Học Kỳ/Giữa Kỳ
Môn: Toán Lớp 11
Lời giải:
Báo saiTa có:
\(\begin{array}{l}\,\,\,\,\lim \left( {\sqrt {9{n^2} + 2n} - 3n + 8} \right)\\ = \lim \dfrac{{9{n^2} + 2n - {{\left( {3n - 8} \right)}^2}}}{{\sqrt {9{n^2} + 2n} + 3n - 8}}\\ = \lim \dfrac{{9{n^2} + 2n - 9{n^2} + 48n - 64}}{{\sqrt {9{n^2} + 2n} + 3n - 8}}\\ = \lim \dfrac{{50n - 64}}{{\sqrt {9{n^2} + 2n} + 3n - 8}}\\ = \lim \dfrac{{50 - \dfrac{{64}}{n}}}{{\sqrt {9 + \dfrac{2}{n}} + 3 - \dfrac{8}{n}}} = \dfrac{{50}}{{3 + 3}} = \dfrac{{25}}{3}\end{array}\)
Chọn A.
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
Đề thi giữa HK2 môn Toán 11 năm 2021-2022
Trường THPT Nguyễn Công Trứ
27/11/2024
65 lượt thi
0/40
Bắt đầu thi
ADMICRO
YOMEDIA
ZUNIA9