Tổng số đường tiệm cận đứng và đường tiệm cận ngang của đồ thị hàm số \(y = \dfrac{{{x^2} + 3x}}{{{x^2} - 4}}\) là
Suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiTa có:
\(\mathop {\lim }\limits_{x \to \pm \infty } y = \mathop {\lim }\limits_{x \to \pm \infty } \dfrac{{{x^2} + 3x}}{{{x^2} - 4}} = \mathop {\lim }\limits_{x \to \pm \infty } \dfrac{{1 + \dfrac{3}{x}}}{{1 - \dfrac{4}{{{x^2}}}}} = 1\)
Suy ra đồ thị hàm số có 1 đường tiệm cận ngang là \(y = 1\)
\(\mathop {\lim }\limits_{x \to - {2^ + }} y = \mathop {\lim }\limits_{x \to - {2^ + }} \dfrac{{{x^2} + 3x}}{{{x^2} - 4}} = - \infty ;\) \(\mathop {\lim }\limits_{x \to {2^ + }} y = \mathop {\lim }\limits_{x \to {2^ + }} \dfrac{{{x^2} + 3x}}{{{x^2} - 4}} = + \infty \)
Do đó đồ thị hàm số có 2 đường tiệm cận đứng là \(x = 2\) và \(x = - 2\).
Vậy đồ thị hàm số đã cho có tất cả 3 đường tiệm cận.
Đáp án A
Đề thi HK1 môn Toán 12 năm 2021-2022
Trường THPT Lý Tự Trọng