Trong hình dưới đây, độ dài đoạn thẳng \({\rm{A'C'}}\) mô tả chiều cao của một cái cây, đoạn thẳng \({\rm{AC}}\) mô tả chiều cao của một cái cọc (cây và cọc cùng vuông góc với đường thẳng đi qua ba điểm \(\left. {A',A,B} \right)\). Giả sử \(AC = 2{\rm{\;m}},AB = 1,5{\rm{\;m}},A'B = 4,5{\rm{\;m}}\). Tính chiều cao của cây?
Suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiTa có \(\left. {\begin{array}{*{20}{c}}{AC \bot A'B}\\{A'C' \bot A'B}\end{array}} \right\}\) nên \(AC\parallel A'C'\)
Xét \(\Delta ABA'\) với \(AC\parallel A'C'\) có: \(\frac{{AC}}{{A'C'}} = \frac{{BA}}{{BA'}}\) (Hệ quả của định lí Thales) hay \(\frac{2}{{A'C'}} = \frac{{1,5}}{{4,5}}\) suy ra \(A'C' = \frac{{2.4,5}}{{2,5}} = 6\left( {{\rm{\;m}}} \right)\)
Vậy cây cao 6m.
Đáp án B.
Đề thi giữa HK2 môn Toán 8 CTST năm 2023-2024
Trường THCS Trung Châu