Trong mặt phẳng tọa độ \(Oxy\), tìm phương trình đường thẳng \(\Delta '\) là ảnh của đường thẳng \(\Delta :x + 2y - 1 = 0\) qua phép tịnh tiến theo véctơ \(\vec v = \left( {1; - 1} \right)\).
Suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiLấy \(M\left( {x;y} \right)\) bất kì thuộc \(\Delta \).
\(M' = {T_{\overrightarrow v }}\left( M \right) \Rightarrow \left\{ \begin{array}{l}x' = x + 1\\y' = y - 1\end{array} \right.\) \( \Rightarrow \left\{ \begin{array}{l}x = x' - 1\\y = y' + 1\end{array} \right.\)
Thay \(\left\{ \begin{array}{l}x = x' - 1\\y = y' + 1\end{array} \right.\) vào phương trình \(\Delta \) ta được:
\(\begin{array}{l}\left( {x' - 1} \right) + 2\left( {y' + 1} \right) - 1 = 0\\ \Leftrightarrow x' + 2y' = 0\\ \Rightarrow M' \in \Delta ':x + 2y = 0\end{array}\)
Chọn B
Đề thi HK1 môn Toán 11 năm 2021-2022
Trường THPT Lương Thế Vinh