Trắc nghiệm môn Toán cao cấp A1
Với hơn 100+ câu trắc nghiệm môn Toán cao cấp A1 có đáp án dành cho các bạn sinh viên Đại học - Cao đẳng ôn thi. Nội dung câu hỏi bao gồm những kiến thức về tích phân xác định, tích phân suy rộng, khai triển Maclaurin, hàm số, giới hạn, đạo hàm cấp,... Để ôn tập hiệu quả các bạn có thể ôn theo từng phần trong bộ câu hỏi này bằng cách trả lời các câu hỏi và xem lại đáp án và lời giải chi tiết. Sau đó các bạn hãy chọn tạo ra đề ngẫu nhiên để kiểm tra lại kiến thức đã ôn.
Chọn hình thức trắc nghiệm (25 câu/30 phút)
-
Câu 1:
Tính tích phân \(\int\limits_0^{\ln 3} {\frac{{dx}}{{\sqrt {{e^x} + 1} }}} \)
A. 0
B. \(\ln \frac{{\sqrt 2 + 1}}{{\sqrt 2 - 1}}\)
C. \(\ln \frac{{\sqrt 2 + 1}}{{3}}\)
D. \(\ln \frac{{\sqrt 2 + 1}}{{3(\sqrt 2 - 1)}}\)
-
Câu 2:
Tính diện tích hình phẳng giới hạn bởi các đường \({y^3} - x = 0,\,y = 1,\,x = 8\)
A. \(\frac{{21}}{4}\)
B. \(\frac{{17}}{4}\)
C. \(\frac{{1}}{4}\)
D. \(\frac{{81}}{4}\)
-
Câu 3:
Tính diện tích hình phẳng giới hạn bởi các đường \({x^2} - y = 0,\,{x^3} - y = 0\)
A. \(\frac{1}{{12}}\)
B. \(\frac{1}{{3}}\)
C. \(\frac{1}{{4}}\)
D. \(\frac{7}{{12}}\)
-
Câu 4:
Tính tích phân \(\int\limits_1^e {\frac{{\cos (\ln x)dx}}{x}} \)
A. 1
B. cos1
C. sin1
D. 0
-
Câu 5:
Tính giới hạn sau: \(\mathop {\lim }\limits_{x \to 0} \frac{{\sqrt[5]{{32 + x}} - 2}}{x}\)
A. 0
B. \(\frac{1}{{80}}\)
C. \(-\frac{4}{{3}}\)
D. \(\frac{-1}{{80}}\)
-
Câu 6:
Tính giới hạn sau: \(\mathop {\lim }\limits_{x \to \pi /4} \cot 2x.\cot (\frac{\pi }{4} - x)\)
A. 2
B. 1
C. 1/2
D. 0
-
Câu 7:
Tìm tiệm cận của hàm số: \(f(x) = \frac{x}{{1 + {e^{\frac{1}{x}}}}}\)
A. \(y = x - \frac{1}{4}\)
B. \(y = \frac{x}{2} - \frac{1}{2}\)
C. \(y = \frac{x}{2} - \frac{1}{4}\)
D. \(y = \frac{x}{2} + \frac{1}{4}\)
-
Câu 8:
Bán kính hội tụ của chuỗi \(\sum\limits_{n = 1}^\infty {\frac{{{x^n}}}{{{2^n} + {e^n}}}} \) là:
A. r = 1/e
B. r = 1
C. r = e
D. \(+ \infty\)
-
Câu 9:
Đạo hàm cấp n của hàm sin(ax) là:
A. \({a^n}.\sin (ax + n\frac{\pi }{2})\)
B. \({a^n}.\sin (ax + \frac{\pi }{2})\)
C. \({a^n}.\sin (x + n\frac{\pi }{2})\)
D. Kết quả khác
-
Câu 10:
Bán kính hội tụ của chuỗi \(\sum\limits_{n = 1}^\infty {\frac{{{x^n}}}{{{5^n}}}} \) là:
A. Kết quả khác
B. r = 1/5
C. r = 3
D. r = 5
-
Câu 11:
Cho chuỗi \(\sum\limits_{n = 1}^\infty {\frac{{5n!}}{{{n^n}}}}\). Chọn phát biểu đúng?
A. Chuỗi phân kỳ
B. Chuỗi hội tụ
C. Chuỗi đan dấu
D. Chuỗi có dấu bất kỳ
-
Câu 12:
Tính tích phân \(I = \int { \frac{{7{{(\ln x - 1)}^6}}}{x}} dx\)
A. \(\frac{{{{\ln }^3}x - 2\ln x + 1}}{{{x^2}}} + C\)
B. \({(\ln x - 1)^7} + C\)
C. \({(\ln x + 1)^7} + C\)
D. \({\ln ^3}x - 2\ln x + 1 + C\)
-
Câu 13:
Xét sự hội tụ của tích phân suy rộng \(\int\limits_0^9 {\frac{{dx}}{{\sqrt x - 3}}}\)
A. hội tụ
B. phân kỳ
C. bán hội tụ
D. hội tụ tuyệt đối
-
Câu 14:
Tích phân \(\int\limits_a^b {f(x)dx} \) bằng với tích phân
A. \(\int\limits_a^c {f(x)dx} + \int\limits_c^b {f(x)dx} ;c \in R\)
B. \(\int\limits_a^c {f(x)dx} + \int\limits_c^b {f(x)dx} ;a \le c \le b\)
C. \(\int\limits_c^a {f(x)dx} + \int\limits_b^c {f(x)dx} ;a \le c \le b\)
D. \(\int\limits_a^b {f(t)dx}\)
-
Câu 15:
Tính diện tích hình phẳng giới hạn bởi: \(y = {2^x},y = 2,x = 0\)
A. \(2-ln2\)
B. \(2 + \frac{1}{{\ln 2}}\)
C. \(2 - \frac{1}{{\ln 2}}\)
D. \(2+ln2\)
-
Câu 16:
Bán kính hội tụ của chuỗi \(\sum\limits_{n = 1}^\infty {\frac{{{x^n}}}{{{n^2}}}}\) là:
A. r = 2
B. r = 1
C. r = 3
D. r = 4
-
Câu 17:
Hàm số \(f(x) = \left\{ \begin{array}{l} {e^{1/x}},\,x \ne 0\\ 0,\,\,\,\,\,x = 0 \end{array} \right.\) có f'(0) là:
A. f'(0) = 0
B. f'(0) = -1
C. f'(0) = 1
D. Không tồn tại
-
Câu 18:
Tích phân suy rộng \(\int\limits_a^b {\frac{{dx}}{{{{(b - x)}^\alpha }}}} (b > a,\,\alpha > 0)\) phân kỳ khi:
A. \(\alpha \ge 1\)
B. \(\alpha < 1\)
C. \(\alpha \ne 1\)
D. \(\forall \alpha \in R\)
-
Câu 19:
Cho \(S = \sum\limits_{n = 1}^\infty {\frac{\pi }{{n(n + 1)}}}\). Chọn phát biểu đúng:
A. \(S=\pi\)
B. không tồn tại S
C. \(S = \frac{2}{\pi }\)
D. S = 0
-
Câu 20:
Cho tích phân suy rộng \(\int\limits_0^{ + \infty } {\frac{{\sin 2x}}{{1 + {x^2}}}} dx\). Phát biểu nào đúng
A. Tích phân hội tụ tuyệt đối
B. Tích phân suy rộng loại 1 và loại 2
C. Tích phân phân kỳ
D. Tích phân bán hội tụ
-
Câu 21:
Đạo hàm cấp n của hàm eax là:
A. \({a^n}.{e^{ax}}\)
B. \({a^n-1}.{e^{ax}}\)
C. \({a^n}.{e^{x}}\)
D. Kết quả khác
-
Câu 22:
Tính \(\int {\frac{{2{e^x}dx}}{{{e^{2x}} - 2.{e^x} + 1}}}\)
A. \(\frac{2}{{{e^x} - 1}} + C\)
B. \(-\frac{2}{{{e^x} - 1}} + C\)
C. \(- \frac{{{{({e^x} - 1)}^3}}}{3} + C\)
D. \(\frac{{{{({e^x} - 1)}^3}}}{3} + C\)
-
Câu 23:
Tính \(\int\limits_3^4 {\frac{{dx}}{{4{x^2} - 16}}}\)
A. \(\frac{1}{{16}}(\ln 5 - \ln 3)\)
B. \(\frac{1}{4}(\ln 5 - \ln 3)\)
C. \(\frac{1}{8}(\ln 5 + \ln 3)\)
D. \(\frac{1}{4}(\ln 5 + \ln 3)\)
-
Câu 24:
Khai triển Maclaurin của \(\sin (2{x^2})\) đến \(x^6\)
A. \(- 2{x^2} - \frac{{4{x^6}}}{3} + o({x^8})\)
B. \(2{x^2} + \frac{{4{x^6}}}{3} + o({x^8})\)
C. \(2{x^2} - \frac{{4{x^6}}}{3} + o({x^8})c\)
D. \(- 2{x^2} + \frac{{4{x^6}}}{3} + o({x^8})\)
-
Câu 25:
Tìm giá trị lớn nhất của hàm số \(f(x) = \frac{{{x^3}}}{3} + \frac{{3{x^2}}}{2} + 2x\) trên [-3;0].
A. 0
B. -1
C. -2
D. -1/2