Cho các số thực dương a và b. Biểu thức thu gọn của biểu thức P là: \( {P = \frac{{{a^{\frac{1}{3}}}\sqrt b + {b^{\frac{1}{3}}}\sqrt a }}{{\sqrt[6]{a} + \sqrt[6]{b}}} - \sqrt[3]{{ab}}}\)
Suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo sai\(\begin{array}{*{20}{l}} {P = \frac{{{a^{\frac{1}{3}}}\sqrt b + {b^{\frac{1}{3}}}\sqrt a }}{{\sqrt[6]{a} + \sqrt[6]{b}}} - \sqrt[3]{{ab}}}\\ {P = \frac{{{a^{\frac{1}{3}}}.{b^{\frac{1}{2}}} + {b^{\frac{1}{3}}}.{a^{\frac{1}{2}}}}}{{{a^{\frac{1}{6}}} + {b^{\frac{1}{6}}}}} - {{\left( {ab} \right)}^{\frac{1}{3}}}}\\ {P = \frac{{{a^{\frac{1}{3}}}{b^{\frac{1}{3}}}\left( {{a^{\frac{1}{6}}} + {b^{\frac{1}{6}}}} \right)}}{{{a^{\frac{1}{6}}} + {b^{\frac{1}{6}}}}} - {{\left( {ab} \right)}^{\frac{1}{3}}}}\\ {P = {{\left( {ab} \right)}^{\frac{1}{3}}} - {{\left( {ab} \right)}^{\frac{1}{3}}} = 0} \end{array}\)