Tập nghiệm của bất phương trình \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciiBaiaac6 % gadaWadaqaamaabmaabaGaamiEaiabgUcaRiaaigdaaiaawIcacaGL % PaaadaqadaqaaiaadIhacqGHsislcaaIYaaacaGLOaGaayzkaaWaae % WaaeaacaWG4bGaeyOeI0IaaG4maaGaayjkaiaawMcaaiabgUcaRiaa % igdaaiaawUfacaGLDbaacqGH+aGpcaaIWaaaaa!49AB! \ln \left[ {\left( {x + 1} \right)\left( {x - 2} \right)\left( {x - 3} \right) + 1} \right] > 0\) là
Suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiĐk: \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaca % WG4bGaey4kaSIaaGymaaGaayjkaiaawMcaamaabmaabaGaamiEaiab % gkHiTiaaikdaaiaawIcacaGLPaaadaqadaqaaiaadIhacqGHsislca % aIZaaacaGLOaGaayzkaaGaey4kaSIaaGymaiabg6da+iaaicdacaGG % Uaaaaa!4687! \left( {x + 1} \right)\left( {x - 2} \right)\left( {x - 3} \right) + 1 > 0.\)
BPT \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyi1HS9aae % WaaeaacaWG4bGaey4kaSIaaGymaaGaayjkaiaawMcaamaabmaabaGa % amiEaiabgkHiTiaaikdaaiaawIcacaGLPaaadaqadaqaaiaadIhacq % GHsislcaaIZaaacaGLOaGaayzkaaGaey4kaSIaaGymaiabg6da+iaa % igdaaaa!4832! \Leftrightarrow \left( {x + 1} \right)\left( {x - 2} \right)\left( {x - 3} \right) + 1 > 1\) (đã thỏa mãn ĐK)
\(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyi1HS9aae % WaaeaacaWG4bGaey4kaSIaaGymaaGaayjkaiaawMcaamaabmaabaGa % amiEaiabgkHiTiaaikdaaiaawIcacaGLPaaadaqadaqaaiaadIhacq % GHsislcaaIZaaacaGLOaGaayzkaaGaeyOpa4JaaGimaaaa!4694! \Leftrightarrow \left( {x + 1} \right)\left( {x - 2} \right)\left( {x - 3} \right) > 0\) \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyi1HSTaam % iEaiabgIGiopaabmaabaGaaGymaiaacUdacaaIYaaacaGLOaGaayzk % aaGaeyOkIG8aaeWaaeaacaaIZaGaai4oaiabgUcaRiabg6HiLcGaay % jkaiaawMcaaiaac6caaaa!463A! \Leftrightarrow x \in \left( {1;2} \right) \cup \left( {3; + \infty } \right).\)