Tìm họ nguyên hàm của hàm số \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 % qacaWGMbWdamaabmaabaWdbiaadIhaa8aacaGLOaGaayzkaaWdbiab % g2da9iGacohacaGGPbGaaiOBaiaaikdacaaIWaGaaGymaiaaiIdaca % WG4baaaa!4190! f\left( x \right) = \sin 2018x\)
Suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiTheo công thức nguyên hàm mở rộng ta có: \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 % qadaWdbaqaaiGacohacaGGPbGaaiOBaiaaikdacaaIWaGaaGymaiaa % iIdacaWG4bGaaeizaiaadIhaaSqabeqaniabgUIiYdGccqGH9aqpcq % GHsisldaWcaaqaa8aaciGGJbGaai4BaiaacohacaaIYaGaaGimaiaa % igdacaaI4aGaamiEaaWdbeaacaaIYaGaaGimaiaaigdacaaI4aaaai % abgUcaRiaadoeaaaa!4E46! \int {\sin 2018x{\rm{d}}x} = - \frac{{\cos 2018x}}{{2018}} + C\)