Tính thể tích của vật thể nằm giữa hai mặt phẳng \(x = 0\) và \(x = \pi \), biết rằng thiết diện của vật thể bị cắt bởi mặt phẳng vuông góc với trục \(Ox\) tại điểm có hoành độ \(x\;(0 \le x \le \pi )\) là một tam giác đều cạnh \(2\sqrt {{\mathop{\rm s}\nolimits} {\rm{inx}}} \).
Chính xác
Xem lời giải
Suy nghĩ và trả lời câu hỏi trước khi xem đáp án
ATNETWORK
Lời giải:
Báo saiTa có:
\(S\left( x \right) = \dfrac{1}{2}.2\sqrt {\sin x} .2\sqrt {\sin x} .\sin {60^0}\) \( = \sqrt 3 \sin x\)
Do đó: \(V = \int\limits_0^\pi {S(x)dx = \int\limits_0^\pi {\sqrt 3 } } \sin {\rm{x}}dx\) \( = - \sqrt 3 \cos x\mathop |\nolimits_0^\pi = 2\sqrt 3 \)
ADMICRO
YOMEDIA
ZUNIA9