Trong không gian với hệ trục tọa độ Oxyz, cho mặt cầu \(\left( S \right):{\left( {x – 1} \right)^2} + {\left( {y – 2} \right)^2} + {\left( {z – 3} \right)^2} = 25\) và hình nón \(\left( H \right)\) có đỉnh \(A\left( {3;2; – 2} \right)\) và nhận AI làm trục đối xứng với I là tâm mặt cầu. Một đường sinh của hình nón \(\left( H \right)\) cắt mặt cầu tại \(M,{\rm{ }}N\) sao cho AM = 3AN. Viết phương trình mặt cầu đồng tâm với mặt cầu \(\left( S \right)\) và tiếp xúc với các đường sinh của hình nón \(\left( H \right)\).
Suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiGọi hình chiếu vuông góc của I trên MN là K.
Dễ thấy \(AN = NK = \frac{1}{3}AM\), mặt cầu \(\left( S \right)\) có tâm \(I\left( {1;2;3} \right)\) và bán kính R = 5
Có \(AM.AN = A{I^2} – {R^2} = 4 \Rightarrow A{N^2} = \frac{4}{3} \Rightarrow KN = AN = \frac{{2\sqrt 3 }}{3} \Rightarrow IK = \sqrt {I{N^2} – K{N^2}} = \frac{{\sqrt {213} }}{3}\).
Nhận thấy mặt cầu đồng tâm với mặt cầu \(\left( S \right)\) và tiếp xúc với các đường sinh của hình nón \(\left( H \right)\) chính là mặt cầu tâm \(I\left( {1;2;3} \right)\) có bán kính \(IK = \frac{{\sqrt {213} }}{3}\)
Vậy phương trình mặt cầu cần tìm là: \({\left( {x – 1} \right)^2} + {\left( {y – 2} \right)^2} + {\left( {z – 3} \right)^2} = \frac{{71}}{3}\).