Cho hàm số \(f\left( x \right)\) có đạo hàm liên tục trên \(\mathbb{R}\) và có đồ thị của hàm\(y = f'\left( x \right)\) như hình vẽ. Xét hàm số \(g(x) = f\left( {{x^2} - 2} \right)\). Mệnh đề nào dưới đây sai ?
Suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiTa có: \(g'\left( x \right) = 2x{\mkern 1mu} f'\left( {{x^2} - 2} \right)\)
Cho \(g'\left( x \right) = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x = 0}\\{{x^2} - 2 = - 1}\\{{x^2} - 2 = 2}\end{array}} \right. \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x = 0}\\{x = {\rm{\;}} \pm 1}\\{x = {\rm{\;}} \pm 2}\end{array}} \right.\), trong đó \(x = {\rm{\;}} \pm 1\) là nghiệm bội 2.
Bảng xét dấu \(g'\left( x \right)\):
Vậy hàm số \(g\left( x \right)\) nghịch biến trên \(\left( { - 1;0} \right)\) là phát biểu sai.
Chọn C.
Đề thi giữa HK1 môn Toán 12 năm 2021-2022
Trường THPT Nguyễn Trãi