Cho khối lăng trụ tam giác đều \(ABC.{A_1}{B_1}{C_1}\) có tất cả các cạnh bằng a. Gọi M là trung điểm của \(AA_1\). Tính thể tích khối chóp \(M.BC{A_1}\).
Chính xác
Xem lời giải
Suy nghĩ và trả lời câu hỏi trước khi xem đáp án
ATNETWORK
Chủ đề: Đề thi Học Kỳ/Giữa Kỳ
Môn: Toán Lớp 12
Lời giải:
Báo sai\(\Delta ABC\) là tam giác đều cạnh anên có diện tích \({S_{ABC}} = \dfrac{{{a^2}\sqrt 3 }}{4}\)
Ta có \(AM = \dfrac{{A{A_1}}}{2} = \dfrac{a}{2}\)
Hai tứ diện MABC và \(M{A_1}BC\) có chung đỉnh C, diện tích hai đáy MAB và \(M{A_1}B\) bằng nhau nên có thể tích bằng nhau, suy ra
\({V_{M.BC{A_1}}} = {V_{M.ABC}} = \dfrac{1}{3}AM.{S_{ABC}}= \dfrac{{{a^3}\sqrt 3 }}{{24}}\)
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
ADMICRO
YOMEDIA
ZUNIA9