Cho lăng trụ đứng \(ABC.A'B'C'\) có đáy \(ABC\) là tam giác vuông tại \(B\), \(BC = 3a,AC = 5a,\) cạnh bên \(A'A = 6a\). Thể tích khối lăng trụ bằng
Chính xác
Xem lời giải
Suy nghĩ và trả lời câu hỏi trước khi xem đáp án
ATNETWORK
Chủ đề: Đề thi Học Kỳ/Giữa Kỳ
Môn: Toán Lớp 12
Lời giải:
Báo sai
\(ABC.A'B'C'\) là lăng trụ đứng nên \(A'A \bot \left( {ABC} \right)\)
Tam giác \(ABC\) vuông tại \(B\) nên \(A{B^2} + B{C^2} = A{C^2}\) \( \Rightarrow AB = \sqrt {A{C^2} - B{C^2}} = 4a\)
Diện tích tam giác vuông \(ABC\) là \({S_{ABC}} = \dfrac{1}{2}AB.BC = \dfrac{1}{2}.3a.4a = 6{a^2}\)
Thể tích của lăng trụ đứng \(ABC.A'B'C'\) là \(V = A'A.{S_{ABC}} = 6a.6{a^2} = 36{a^3}\)
Chọn C
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
ADMICRO
YOMEDIA
ZUNIA9