Cho phương trình \(\log _{\sqrt 2 }^2x - 3{\log _2}2x + 1 = 0\). Nếu đặt \(t = {\log _2}x\) thì được phương trình
Chính xác
Xem lời giải
Suy nghĩ và trả lời câu hỏi trước khi xem đáp án
ATNETWORK
Chủ đề: Đề thi Học Kỳ/Giữa Kỳ
Môn: Toán Lớp 12
Lời giải:
Báo saiTXĐ: \(D = \left( {0; + \infty } \right)\)
Ta có:
\(\begin{array}{l}\log _{\sqrt 2 }^2x - 3{\log _2}2x + 1 = 0\\ \Leftrightarrow \log _{{2^{\dfrac{1}{2}}}}^2x - 3\left( {{{\log }_2}2 + {{\log }_2}x} \right) + 1 = 0\\ \Leftrightarrow {\left( {2{{\log }_2}x} \right)^2} - 3\left( {1 + {{\log }_2}x} \right) + 1 = 0\\ \Leftrightarrow 4\log _2^2x - 3{\log _2}x - 2 = 0\end{array}\)
Nếu đặt \(t = {\log _2}x\) thì phương trình trên trở thành \(4{t^2} - 3t - 2 = 0\)
Chọn C
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
ADMICRO
YOMEDIA
ZUNIA9