Số nghiệm nguyên của bất phương trình sau \({\log _{\frac{1}{3}}}\left( {x - 1} \right) > - 3\) là?
Chính xác
Xem lời giải
Suy nghĩ và trả lời câu hỏi trước khi xem đáp án
ATNETWORK
Chủ đề: Đề thi Học Kỳ/Giữa Kỳ
Môn: Toán Lớp 12
Lời giải:
Báo saiTa có \({\log _{\frac{1}{2}}}\left( {x - 1} \right) > - 3\) ĐKXĐ: \(\left( {x > 1} \right)\)
\(\begin{array}{l} \Leftrightarrow - {\log _2}\left( {x - 1} \right) > - 3\\ \Leftrightarrow {\log _2}\left( {x - 1} \right) < 3\\ \Leftrightarrow x - 1 < {2^3}\\ \Leftrightarrow x < 9\end{array}\)
Khi đó \(1 < x < 9;x \in \mathbb{Z} \Rightarrow \) có 7 giá trị thỏa mãn.
Chọn B.
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
Đề thi giữa HK2 môn Toán 12 năm 2023-2024
Trường THPT Võ Văn Kiệt
17/02/2025
60 lượt thi
0/40
Bắt đầu thi
ADMICRO
YOMEDIA
ZUNIA9