Tìm giá trị của m để hàm số \(y = - {x^3} - 3{x^2} + m\) có giá trị nhỏ nhất trên [-1;1] bằng 0?
Chính xác
Xem lời giải
Suy nghĩ và trả lời câu hỏi trước khi xem đáp án
ATNETWORK
Chủ đề: Đề thi Học Kỳ/Giữa Kỳ
Môn: Toán Lớp 12
Lời giải:
Báo saiXét hàm số \(y = - {x^3} - 3{x^2} + m\) trên [-1;1].
\(\begin{array}{l} y' = - 3{x^2} - 6x\\ y' = 0 \Leftrightarrow \left[ \begin{array}{l} x = 0\\ x = - 2 \end{array} \right. \end{array}\)
Vì \(x \in \left[ { - 1;1} \right] \Rightarrow x = 0\)
\(\begin{array}{l} y( - 1) = - 2 + m\\ y(0) = m\\ y(1) = - 4 + m \end{array}\)
Vậy giá trị nhỏ nhất của hàm số trên [-1;1] là \(y(0) = - 4 + m\)
Ta có: \(- 4 + m = 0 \Leftrightarrow m = 4\).
Chọn C
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
Đề thi giữa HK1 môn Toán 12 năm 2022-2023
Trường THPT Thăng Long
14/11/2024
123 lượt thi
0/40
Bắt đầu thi
ADMICRO
YOMEDIA
ZUNIA9