Tìm giá trị nhỏ nhất của hàm số \(y = \dfrac{{{x^2} - 5}}{{x + 3}}\) trên \(\left[ {0;2} \right]?\)
Suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiPhương pháp giải:
Phương pháp tìm GTLN, GTNN của hàm số \(y = f\left( x \right)\) trên \(\left[ {a;b} \right]\):
- Bước 1: Tính y’, giải phương trình \(y' = 0\), suy ra các nghiệm \({x_i} \in \left[ {a;b} \right]\).
- Bước 2: Tính các giá trị \(y\left( a \right);y\left( b \right);y\left( {{x_i}} \right).\)
- Bước 3: So sánh và kết luận: \(\mathop {\max }\limits_{x \in \left[ {a;b} \right]} {\mkern 1mu} y = \max \left\{ {y\left( a \right);y\left( b \right);y\left( {{x_i}} \right)} \right\};{\mkern 1mu} {\mkern 1mu} \mathop {\min }\limits_{x \in \left[ {a;b} \right]} {\mkern 1mu} y = \min \left\{ {y\left( a \right);y\left( b \right);y\left( {{x_i}} \right)} \right\}\)
Lời giải chi tiết:
TXĐ: \(D = R\backslash \left\{ { = 3} \right\}\).
Ta có:
\(\begin{array}{*{20}{l}}{y' = \dfrac{{2x\left( {x + 3} \right) - {x^2} + 5}}{{{{\left( {x + 3} \right)}^2}}} = \dfrac{{{x^2} + 6x + 5}}{{{{\left( {x + 3} \right)}^2}}} = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x = - 1 \notin \left[ {0;2} \right]}\\{x = - 5 \notin \left[ {0;2} \right]}\end{array}} \right.}\\{y\left( 0 \right) = - \dfrac{5}{3};{\mkern 1mu} {\mkern 1mu} y\left( 2 \right) = - \dfrac{1}{5}}\\{ \Rightarrow \mathop {\min }\limits_{x \in \left[ {0;2} \right]} y = \dfrac{{ - 5}}{3}}\end{array}\)
Chọn A.
Đề thi giữa HK1 môn Toán 12 năm 2023 - 2024
Trường THPT Bắc Ninh