Tìm tập các giá trị thực của tham số \(m\) để hàm số \(y = \dfrac{{{x^3}}}{3} - m{x^2} + \left( {{m^2} - m} \right)x + 2019\) có hai điểm cực trị \({x_1},\,{x_2}\) thỏa mãn \({x_1}.{x_2} = 2.\)
Chính xác
Xem lời giải
Suy nghĩ và trả lời câu hỏi trước khi xem đáp án
ATNETWORK
Chủ đề: Đề thi Học Kỳ/Giữa Kỳ
Môn: Toán Lớp 12
Lời giải:
Báo saiTa có: \(y' = {x^2} - 2mx + {m^2} - m\)
Hàm số đã cho có hai điểm cực trị \( \Leftrightarrow y' = 0\) có hai nghiệm phân biệt \( \Leftrightarrow \Delta ' = {m^2} - {m^2} + m > 0 \Leftrightarrow m > 0\)
Khi đó \({x_1}{x_2} = 2 \Leftrightarrow {m^2} - m = 2\) \( \Leftrightarrow {m^2} - m - 2 = 0 \Leftrightarrow \left[ \begin{array}{l}m = - 1\left( {loai} \right)\\m = 2\left( {TM} \right)\end{array} \right.\)
Vậy \(m = 2\).
Chọn B.
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
ADMICRO
YOMEDIA
ZUNIA9