Bất phương trình \({{2}^{2x}}-{{18.2}^{x}}+32\ge 0\) có tập nghiệm là
Chính xác
Xem lời giải
Suy nghĩ trả lời câu hỏi trước khi xem đáp án
ATNETWORK
Chủ đề: Đề thi THPT QG
Môn: Toán
Lời giải:
Báo saiĐặt \(t={{2}^{x}}\left( t>0 \right)\). Bất phương trình trở trành: \({t^2} - 18t + 32 \ge 0 \Leftrightarrow \left[ \begin{array}{l}
t \le 2\\
t \ge 16
\end{array} \right.\)
Khi đó ta có: \(\left[ \begin{array}{l}
0 < {2^x} \le 2\\
{2^x} \ge 16
\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}
x \le 1\\
x \ge 4
\end{array} \right..\)
Vậy tập nghiệm của bất phương trình là: \(S=\left( -\infty ;1 \right]\cup \left[ 4;+\infty \right)\)
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
Đề thi thử THPT QG môn Toán năm 2020
Trường THPT Lý Thái Tổ-Bắc Ninh lần 1
13/11/2024
6 lượt thi
0/50
Bắt đầu thi
ADMICRO
YOMEDIA
ZUNIA9