Cho hình lăng trụ đứng ABC.A’B’C’ có tất cả các cạnh bằng a. Gọi M là trung điểm của CC’ (tham khảo hình bên). Khoảng cách từ M đến mặt phẳng (A’BC) bằng
Suy nghĩ trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo sai\(C'M \cap \left( {A'BC} \right) = C\), suy ra \(\frac{{d\left( {M,\left( {A'BC} \right)} \right)}}{{d\left( {C',\left( {A'BC} \right)} \right)}} = \frac{{C'M}}{{C'C}} = \frac{1}{2}\).
Ta có \({V_{C'.A'BC}} = \frac{1}{3}{V_{ABC.A'B'C'}} = \frac{1}{3}.C'C.{S_{\Delta ABC}} = \frac{1}{3}.a.\frac{{{a^2}\sqrt 3 }}{4} = \frac{{{a^3}\sqrt 3 }}{{12}}\).
Lại có \(A'B = a\sqrt 2 ,CB = a,A'C = a\sqrt 2 \Rightarrow {S_{A'BC}} = \frac{{{a^2}\sqrt 7 }}{4}\)
Suy ra \(d\left( {C',\left( {A'BC} \right)} \right) = \frac{{3{V_{C'.A'BC}}}}{{{S_{\Delta A'BC}}}} = \frac{{3.\frac{{{a^3}\sqrt 3 }}{{12}}}}{{\frac{{{a^2}\sqrt 7 }}{4}}} = \frac{{a\sqrt {21} }}{7}\)
Vậy \(d\left( {M,\left( {A'BC} \right)} \right) = \frac{1}{2}d\left( {C',\left( {A'BC} \right)} \right) = \frac{1}{2}.\frac{{a\sqrt {21} }}{7} = \frac{{a\sqrt {21} }}{{14}}\).
Đề thi tốt nghiệp THPT môn Toán năm 2020
Bộ GD&ĐT mã đề 123