Biết rằng bất phương trình \({\log _2}\left( {{5^x} + 2} \right) + 2.{\log _{\left( {{5^x} + 2} \right)}}2 > 3\) có tập nghiệm là \(S = \left( {{{\log }_a}b; + \infty } \right)\), với \(a\), \(b\) là các số nguyên dương nhỏ hơn 6 và \(a\not = 1\). Tính \(P = 2a + 3b\).
Suy nghĩ trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiTa có:
\({\log _2}\left( {{5^x} + 2} \right) + 2.{\log _{\left( {{5^x} + 2} \right)}}2 > 3 \Leftrightarrow {\log _2}\left( {{5^x} + 2} \right) + \dfrac{2}{{{{\log }_2}\left( {{5^x} + 2} \right)}} > 3\) (1)
Đặt \({\log _2}\left( {{5^x} + 2} \right) = t,\,\left( {t \ne 0} \right)\). Ta có \({5^x} + 2 > 2 \Rightarrow {\log _2}\left( {{5^x} + 2} \right) > {\log _2}2 = 1 \Rightarrow t > 1\)
Khi đó, (1) trở thành: \(t + \dfrac{2}{t} > 3 \Leftrightarrow \dfrac{{{t^2} - 3t + 2}}{t} > 0\)
Ta có bảng xét dấu sau:
Từ BBT kết hợp điều kiện của \(t\) ta có:
\( \Rightarrow t > 2 \Rightarrow {\log _2}\left( {{5^x} + 2} \right) > 2\,\, \Leftrightarrow {5^x} + 2 > 4 \Leftrightarrow {5^x} > 2 \Leftrightarrow x > {\log _5}2\)
Vậy tập nghiệm của (1) là \(S = \left( {{{\log }_5}2; + \infty } \right)\,\, \Rightarrow a = 5,\,\,b = 2 \Rightarrow P = 2a + 3b = 16\).
Chọn: D