Cắt một hình trụ bởi mặt phẳng qua trục của nó, ta được thiết diện là một hình vuông có cạnh bằng \(3a\). Tính diện tích toàn phần của hình trụ đã cho.
Chính xác
Xem lời giải
Suy nghĩ trả lời câu hỏi trước khi xem đáp án
ATNETWORK
Chủ đề: Đề thi THPT QG
Môn: Toán
Lời giải:
Báo saiGọi \(h\) và \(r\) lần lượt là chiều cao và bán kính đáy của hình trụ.
Cắt một hình trụ bởi mặt phẳng qua trục của nó, ta được thiết diện là một hình vuông có cạnh hình vuông bằng chiều cao hình trụ và gấp đôi bán kính đáy hình trụ, suy ra \(h = 2r = 3a \Rightarrow r = \frac{{3a}}{2}\).
Vậy diện tích toàn phần hình trụ là: \({S_{tp}} = 2\pi r\left( {r + h} \right)\)\( = 2\pi .\frac{{3a}}{2}\left( {\frac{{3a}}{2} + 3a} \right) = \frac{{27\pi {a^2}}}{2}\).
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
Đề thi thử THPT QG năm 2021 môn Toán
Trường THPT Phạm Ngũ Lão
13/11/2024
7 lượt thi
0/50
Bắt đầu thi
ADMICRO
YOMEDIA
ZUNIA9