Cho hai số phức \({{z}_{1}},\,{{z}_{2}}\) thỏa mãn \(\left| {{z}_{1}}+6 \right|=5,\,\left| {{z}_{2}}+2-3i \right|=\left| {{z}_{2}}-2-6i \right|\). Giá trị nhỏ nhất của \(\left| {{z}_{1}}-{{z}_{2}} \right|\) bằng
Suy nghĩ trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiGọi \({{z}_{1}}={{x}_{1}}+{{y}_{1}}i,\,\,{{z}_{2}}={{x}_{2}}+{{y}_{2}}i\), với \({{x}_{1}},{{y}_{1}},{{x}_{2}},{{y}_{2}}\in \mathbb{R}\).
Do \(\left| {{z}_{1}}+6 \right|=5\Rightarrow \left| {{x}_{1}}+6+{{y}_{1}}i \right|=5\Rightarrow \sqrt{{{\left( {{x}_{1}}+6 \right)}^{2}}+{{y}_{1}}^{2}}=5\Leftrightarrow {{\left( {{x}_{1}}+6 \right)}^{2}}+{{y}_{1}}^{2}=25\)
\(\Rightarrow \) Điểm \({{M}_{1}}\left( {{x}_{1}};{{y}_{1}} \right)\) biểu diễn số phức \({{z}_{1}}\) thuộc đường tròn \((C):{{\left( x+6 \right)}^{2}}+{{y}^{2}}=25\)
Do \(\left| {{z}_{2}}+2-3i \right|=\left| {{z}_{2}}-2-6i \right|\Rightarrow \left| {{x}_{2}}+2+\left( {{y}_{2}}-3 \right)i \right|=\left| {{x}_{2}}-2+\left( {{y}_{2}}-6 \right)i \right|\)
\(\Leftrightarrow \sqrt{{{\left( {{x}_{2}}+2 \right)}^{2}}+{{\left( {{y}_{2}}-3 \right)}^{2}}}=\sqrt{{{\left( {{x}_{2}}-2 \right)}^{2}}+{{\left( {{y}_{2}}-6 \right)}^{2}}}\)
\(\Leftrightarrow {{\left( {{x}_{2}}+2 \right)}^{2}}+{{\left( {{y}_{2}}-3 \right)}^{2}}={{\left( {{x}_{2}}-2 \right)}^{2}}+{{\left( {{y}_{2}}-6 \right)}^{2}}\)
\(\Leftrightarrow 8{{x}_{2}}+6{{y}_{2}}-27=0\)
\(\Rightarrow \) Điểm \({{M}_{2}}\left( {{x}_{2}};{{y}_{2}} \right)\) biểu diễn số phức \({{z}_{2}}\) thuộc đường thẳng d:8x+6y-27=0.
\(\Rightarrow \left| {{z}_{1}}-{{z}_{2}} \right|=\left| {{x}_{1}}-{{x}_{2}}+\left( {{y}_{1}}-{{y}_{2}} \right)i \right|=\sqrt{{{\left( {{x}_{1}}-{{x}_{2}} \right)}^{2}}+{{\left( {{y}_{1}}-{{y}_{2}} \right)}^{2}}}=\left| \overrightarrow{{{M}_{2}}{{M}_{1}}} \right|={{M}_{1}}{{M}_{2}}\)
Đường tròn (C) có tâm \(I\left( -6;0 \right)\), bán kính R=5. Ta có \(d\left( I,d \right)=\frac{\left| 8.\left( -6 \right)+6.0-27 \right|}{\sqrt{{{8}^{2}}+{{6}^{2}}}}=\frac{15}{2}\)
\(\Rightarrow \) d và (C) không có điểm chung.
Gọi H là hình chiếu vuông góc của I trên d, A là giao điểm của đoạn IH và (C)
\(\Rightarrow AH=IH-R=d\left( I,d \right)-R=\frac{5}{2}\) (hình vẽ).
Đề thi thử THPT QG năm 2021 môn Toán
Trường THPT Nguyễn Văn Linh lần 2