Đề thi thử THPT QG năm 2021 môn Toán
Trường THPT Nguyễn Văn Linh lần 2
-
Câu 1:
Đường cong hình bên là đồ thị của hàm số nào trong bốn hàm số ở phương án A, B, C, D dưới đây?
-
Câu 2:
Trong không gian với hệ tọa độ Oxyz, cho mặt cầu \(\left( S \right):{{x}^{2}}+{{y}^{2}}+{{z}^{2}}-2x+4y-4z-25=0\). Tìm tọa độ tâm I và bán kính R của mặt cầu \(\left( S \right)\).
-
Câu 3:
Cho hàm số \(y=f\left( x \right)\) liên tục trên \(\mathbb{R}\) và có bảng biến thiên như hình vẽ bên dưới.
Hàm số \(y=f\left( x \right)\) đồng biến trên khoảng nào dưới đây?
-
Câu 4:
Cho x,y>0 và \(\alpha ,\beta \in \mathbb{R}\). Tìm đẳng thức sai dưới đây.
-
Câu 5:
Tập nghiệm của phương trình \({{\log }_{2}}\left( {{x}^{2}}-3x+2 \right)=1\) là
-
Câu 6:
Cho cấp số cộng \(\left( {{u}_{n}} \right)\) có số hạng đầu \({{u}_{1}}=2\) và công sai d=3. Giá trị của \({{u}_{5}}\) bằng
-
Câu 7:
Số phức nào sau đây có điểm biểu diễn là \(M(1;-2)\)?
-
Câu 8:
Cho hàm số \(f\left( x \right)\) liên tục trên \(\mathbb{R}\) và \(\int\limits_{0}^{4}{f\left( x \right)d\text{x}}=10,\,\,\int\limits_{3}^{4}{f\left( x \right)d\text{x}}=4\). Tích phân \(\int\limits_{0}^{3}{f\left( x \right)d\text{x}}\) bằng
-
Câu 9:
Cho tập hợp \(A\) gồm có 9 phần tử.Số tập con gồm có 4 phần tử của tập hợp \(A\) là
-
Câu 10:
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh 2a tâm O, SO vuông góc với \(\left( ABCD \right)\), SO=a. Thể tích của khối chóp S.ABCD là
-
Câu 11:
Trong không gian Oxyz, cho đường thẳng \(d:\left\{ \begin{array}{l} x = 1\\ y = 2 + 3t\\ z = 5 - t \end{array} \right.\) \(\left( t\in \mathbb{R} \right)\). Vectơ nào dưới đây là vectơ chỉ phương của d?
-
Câu 12:
Cho hai số phức \({{z}_{1}}=2-2i\) và \({{z}_{2}}=1+2i\). Tìm số phức \(z=\frac{{{z}_{1}}}{{{z}_{2}}}\).
-
Câu 13:
Đạo hàm của hàm số \(f\left( x \right)={{6}^{1-3x}}\) là:
-
Câu 14:
Trong không gian Oxyz, cho hai điểm \(A\left( 2;-4;3 \right)\) và \(B\left( 2;2;7 \right)\). Trung điểm của đoạn AB có tọa độ là
-
Câu 15:
Đường tiệm cận ngang của đồ thị hàm số \(y=\frac{-2x+3}{-x+1}\) là đường thẳng
-
Câu 16:
Một khối trụ có bán kính đường tròn đáy bằng \(r\) và chiều cao bằng \(h\) thì có thể tích bằng
-
Câu 17:
Cho hình nón có chiều cao bằng \(8\,cm,\) bán kính đáy bằng \(6\,cm.\) Diện tích toàn phần của hình nón đã cho bằng
-
Câu 18:
Họ nguyên hàm của hàm số \(f\left( x \right)=\cos x\) là
-
Câu 19:
Trong không gian Oxyz, điểm \(M\left( 3;4;-2 \right)\) thuộc mặt phẳng nào trong các mặt phẳng sau?
-
Câu 20:
Cho hàm số \(y=a{{x}^{3}}+b{{x}^{2}}+cx+d\,\left( a\,,\,b\,,\,c\,,\,d\in \mathbb{R} \right)\) có đồ thị như hình vẽ bên. Số điểm cực trị của hàm số đã cho là
-
Câu 21:
Cho hàm số \(y=f\left( x \right)\) liên tục trên \(\mathbb{R}\), có đạo hàm \({f}'\left( x \right)={{x}^{3}}{{\left( x-1 \right)}^{2}}\left( x+2 \right)\). Hỏi hàm số \(y=f\left( x \right)\) có bao nhiêu điểm cực trị?
-
Câu 22:
Trong không gian Oxyz, cho đường thẳng \(d:\frac{x}{2}=\frac{y-3}{1}=\frac{z-2}{-3}\) và mặt phẳng \(\left( P \right):x-y+2z-6=0\). Đường thẳng nằm trong \(\left( P \right)\) cắt và vuông góc với d có phương trình là?
-
Câu 23:
Cho khối chóp S.ABCD có đáy ABCD là hình vuông cạnh a, tam giác SAB cân tại S và nằm trong mặt phẳng vuông góc với đáy, SA=2a. Tính theo a thể tích khối chóp S.ABCD.
-
Câu 24:
Từ một hộp đựng 5 quả cầu màu đỏ, 8 quả cầu màu xanh và 7 quả cầu màu trắng, chọn ngẫu nhiên 4 quả cầu. Tính xác suất để 4 quả cầu được chọn có đúng 2 quả cầu màu đỏ.
-
Câu 25:
Cho biết \(\int\limits_{0}^{\frac{\pi }{2}}{\left( 4-\sin x \right)}dx=a\pi +b\) với a,b là các số nguyên. Giá trị của biểu thức a+b bằng
-
Câu 26:
Biết \(F\left( x \right)\) là một nguyên hàm của hàm số \(f(x)=\ {{e}^{-x}}+\sin x\) thỏa mãn \(F\left( 0 \right)\text{ }=\text{ }0\). Tìm \(F\left( x \right).\)
-
Câu 27:
Tập nghiệm của bất phương trình \({{\log }_{3}}\left( {{x}^{2}}-8x \right)<2\) là
-
Câu 28:
Tìm nghiệm của phương trình \({{\log }_{3}}\left( x-9 \right)=3\).
-
Câu 29:
Trong không gian Oxyz, cho điểm \(I\left( 1;\,-2;\,3 \right)\). Phương trình mặt cầu tâm I và tiếp xúc với trục Oy là
-
Câu 30:
Tìm phần thực của số phức z thỏa mãn: \(\left( 5-i \right)z=7-17i\)
-
Câu 31:
Hàm số \(y=\frac{x+1}{x-1}\) nghịch biến trên khoảng nào dưới đây?
-
Câu 32:
Cho hình hộp \(ABCD.{A}'{B}'{C}'{D}'\) có đáy ABCD là hình chữ nhật với AB=a, \(AD=a\sqrt{3}\). Hình chiếu vuông góc của \({A}'\) lên \(\left( ABCD \right)\) trùng với giao điểm của AC và BD. Khoảng cách từ \({B}'\) đến mặt phẳng \(\left( {A}'BD \right)\) là
-
Câu 33:
Cho hình chóp S.ABCD đáy là hình thoi tâm O và \(SO\bot (ABCD), SO=\frac{a\sqrt{6}}{3},BC=SB=a\). Số đo góc giữa hai mặt phẳng (SBC) và (SCD) là:
-
Câu 34:
Tọa độ giao điểm của đồ thị hàm số \(y=\frac{2x-3}{1-x}\) với trục tung là
-
Câu 35:
Cho hàm số y=f(x) liên tục trên đoạn \(\left[ -2;6 \right]\), có đồ thị như hình vẽ. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của \(f\left( x \right)\) trên miền \(\left[ -2;6 \right]\). Tính giá trị của biểu thức T=2M+3m.
-
Câu 36:
Cho số phức z=a+bi (a, \(b\in \mathbb{R}\)) thỏa mãn \(2z-3i.\bar{z}+6+i=0\). Tính S=a-b.
-
Câu 37:
Cho \({{\log }_{5}}7=a\) và \({{\log }_{5}}4=b.\) Biểu diễn \({{\log }_{5}}560\) dưới dạng \({{\log }_{5}}560=m.a+n.b+p,\) với \(m,\,\,n,\,\,p\) là các số nguyên. Tính S=m+n.p.
-
Câu 38:
Cho hai số thực \(x,\,y\) thỏa mãn \(2x+1+\left( 1-2y \right)i=2\left( 2-i \right)+yi-x\) với i là đơn vị ảo. Khi đó giá trị của \({{x}^{2}}-3xy-y\) bằng
-
Câu 39:
Có bao nhiêu giá trị nguyên dương của tham số m để tập nghiệm của bất phương trình \(\left( {{3}^{x+2}}-\sqrt{3} \right)\left( {{3}^{x}}-2m \right)<0\) chứa không quá 9 số nguyên?
-
Câu 40:
Cho S là diện tích của hình phẳng giới hạn bởi đồ thị \(\left( C \right)\) của hàm số \(y=x\sqrt{1+{{x}^{2}}}\), trục hoành, trục tung và đường thẳng x=1. Biết \(S=a\sqrt{2}+b\left( a,b\in \mathbb{Q} \right).\) Tính a+b.
-
Câu 41:
Trong không gian Oxyz, cho hai đường thẳng \({{d}_{1}},{{d}_{2}}\) và mặt phẳng \(\left( \alpha \right)\) có phương trình \({d_1}:\left\{ \begin{array}{l} x = 1 + 3t\\ y = 2 + t\\ z = - 1 + 2t \end{array} \right.,\,\,{d_2}:\frac{{x - 2}}{{ - 3}} = \frac{y}{2} = \frac{{z - 4}}{{ - 2}},\,\,\left( \alpha \right):x + y - z - 2 = 0\). Phương trình đường thẳng \(\Delta \) nằm trong mặt phẳng \(\left( \alpha \right)\), cắt cả hai đường thẳng \({{d}_{1}}\) và \({{d}_{2}}\) là
-
Câu 42:
Cho hàm số \(f\left( x \right)={{x}^{4}}\). Hàm số \(g\left( x \right)=f'\left( x \right)-3{{x}^{2}}-6x+1\) đạt cực tiểu, cực đại lần lượt tại \({{x}_{1}},\text{ }{{\text{x}}_{2}}\). Tính \(m=g\left( x{{ }_{1}} \right)g\left( {{x}_{2}} \right)\).
-
Câu 43:
Cho lăng trụ tam giác đều có cạnh đáy bằng a cạnh bên bằng b. Thể tích của khối cầu đi qua các đỉnh của lăng trụ bằng
-
Câu 44:
Cho hàm số \(f\left( x \right)\) thỏa mãn \(f\left( 1 \right)=3\) và \(x\left( 4-f'\left( x \right) \right)=f\left( x \right)-1\) với mọi x>0. Tính \(f\left( 2 \right)\).
-
Câu 45:
Ông An có một khu vườn giới hạn bởi đường parabol và đường thẳng. Nếu đặt trong hệ tọa độ Oxy như hình vẽ thì parabol có phương trình \(y={{x}^{2}}\) và đường thẳng là y=25. Ông An dự định dung một mảnh vườn nhỏ được chia từ khu vườn bởi đường thẳng đi qua điểm O và M trên parabol để trồng một loại hoa. Hãy giúp ông An xác định điểm M bằng cách tính độ dài OM để diện tích mảnh vườn nhỏ bằng \(\frac{9}{2}\).
-
Câu 46:
Cho hàm số \(f\left( x \right)\). Biết \(f\left( 0 \right)=4\) và \({f}'\left( x \right)=2{{\sin }^{2}}x+1,\text{ }\forall x\in \mathbb{R}\), khi đó \(\int\limits_{0}^{\frac{\pi }{4}}{f\left( x \right)\text{d}x}\) bằng
-
Câu 47:
Trong không gian với hệ tọa độ Oxyz, cho mặt cầu \(\left( {{S}_{m}} \right):{{\left( x-1 \right)}^{2}}+{{\left( y-1 \right)}^{2}}+{{\left( z-m \right)}^{2}}=\frac{{{m}^{2}}}{4}\) và hai điểm \(A\left( 2;3;5 \right), B\left( 1;2;4 \right)\). Tìm giá trị nhỏ nhất của m để trên \(\left( {{S}_{m}} \right)\) tồn tại điểm M sao cho \(M{{A}^{2}}-M{{B}^{2}}=9\).
-
Câu 48:
Tổng tất cả các giá trị nguyên của tham số m để phương trình \({{3}^{x-3+\sqrt[3]{m-3x}}}+({{x}^{3}}-9{{x}^{2}}+24x+m){{.3}^{x-3}}={{3}^{x}}+1\) có 3 nghiệm phân biệt bằng:
-
Câu 49:
Cho hai số phức \({{z}_{1}},\,{{z}_{2}}\) thỏa mãn \(\left| {{z}_{1}}+6 \right|=5,\,\left| {{z}_{2}}+2-3i \right|=\left| {{z}_{2}}-2-6i \right|\). Giá trị nhỏ nhất của \(\left| {{z}_{1}}-{{z}_{2}} \right|\) bằng
-
Câu 50:
Cho hàm số \(y=f\left( x \right)\) có bảng biến thiên như sau
Hỏi đồ thị hàm số \(g\left( x \right)=\left| f\left( x-2018 \right)+2019 \right|\) có bao nhiêu điểm cực trị?