Cho hàm số bậc ba y=f(x) có đồ thị là đường cong hình bên.
Biết f(x) đạt cực tiểu tại x=1 và f(x)+1 và f(x)-1 lần lượt chia hết cho \({{(x-1)}^{2}}\) và \({{(x+1)}^{2}}\). Gọi \({{S}_{1}},{{S}_{2}}\) là diện tích hai hình phẳng được gạch trong hình bên. Tính \({{S}_{1}}+{{S}_{2}}\).
Suy nghĩ trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiĐặt \(f(x) = a{x^3} + b{x^2} + cx + d\).
Theo bài ra f(x) + 1 và f(x) - 1 lần lượt chia hết cho \({(x - 1)^2}\) và \({(x + 1)^2}\) nên ta có thể phân tích thành nhân tử như sau:
\(\left\{ \begin{array}{l} f(x) + 1 = a{(x - 1)^2}(x - m)\\ f(x) - 1 = a{(x + 1)^2}(x - n) \end{array} \right.\)
Kết hợp với bài ra ta có :
\(\left\{ \begin{array}{l} f(1) + 1 = 0\\ f( - 1) - 1 = 0\\ f(0) = 0\\ f'(1) = 0 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} a + b + c + d + 1 = 0\\ - a + b - c + d - 1 = 0\\ d = 0\\ 3a + 2b + c = 0 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} a = \frac{1}{2}\\ b = 0\\ c = - \frac{3}{2}\\ d = 0 \end{array} \right.\)
Do đó \(f(x) = \frac{1}{2}{x^3} - \frac{3}{2}x\)
Ta có \(f(x)=0\Leftrightarrow \frac{1}{2}{{x}^{3}}-\frac{3}{2}x=0\Leftrightarrow \left[ \begin{align} & x=0 \\ & x=\pm \sqrt{3} \\ \end{align} \right.\).
\({{S}_{1}}\) là diện tích hình phẳng được giới hạn bởi đồ thị y=f(x);y=-1;x=0;x=1
Nên \({{S}_{1}}=\int\limits_{0}^{1}{\left( \frac{1}{2}{{x}^{3}}-\frac{3}{2}x+1 \right)}dx=\frac{3}{8}\)
\({{S}_{2}}\) là diện tích hình phẳng được giới hạn bởi đồ thị \(y=f(x);y=0;x=1;x=\sqrt{3}\)
Nên \({{S}_{2}}=\int\limits_{1}^{\sqrt{3}}{\left( -\frac{1}{2}{{x}^{3}}+\frac{3}{2}x \right)}dx=\frac{1}{2}\).
Vậy \({{S}_{1}}+{{S}_{2}}=\frac{3}{8}+\frac{1}{2}=\frac{7}{8}\) (đvdt).