Cho hàm số \(y=f\left( x \right)\) có đạo hàm liên tục trên \(\mathbb{R}\) và \(f\left( 0 \right)=0;f\left( 4 \right)>4\). Biết hàm số \(y={f}'\left( x \right)\) có đồ thị như hình vẽ bên. Tìm số điểm cực tiểu của hàm số \(g\left( x \right)=\left| f\left( {{x}^{2}} \right)-2x \right|\).
Suy nghĩ trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiĐặt \(h\left( x \right)=f\left( {{x}^{2}} \right)-2x\Rightarrow {h}'\left( x \right)=2x.{f}'\left( {{x}^{2}} \right)-2\).
Vì \({{x}^{2}}\ge 0,\forall x\in \mathbb{R}\) nên từ đồ thị ta thấy \({f}'\left( {{x}^{2}} \right)\ge 0,\forall x\in \mathbb{R}\).
Với \(x\le 0\) ta luôn có \({h}'\left( x \right)=2x.{f}'\left( {{x}^{2}} \right)-2<0\).
Với x>0, ta có \({h}'\left( x \right)=0\Leftrightarrow {f}'\left( {{x}^{2}} \right)=\frac{1}{x}\begin{matrix} {} & \left( * \right) \\ \end{matrix}\)
Đặt \(t={{x}^{2}}\), phương trình \(\left( * \right)\) trở thành \({f}'\left( t \right)=\frac{1}{\sqrt{t}}\left( t>0 \right)\).
Xét sự tương giao giữa hai đồ thị hàm số \(y={f}'\left( t \right)\) và \(y=\frac{1}{\sqrt{t}}\) ở hình vẽ dưới đây:
Ta có \({f}'\left( t \right)=\frac{1}{\sqrt{t}}\Leftrightarrow t={{t}_{0}}\in \left( 0;1 \right)\). Khi đó \({h}'\left( x \right)=0\Leftrightarrow x=\sqrt{{{t}_{0}}}\).
Mặt khác \(h\left( 0 \right)=f\left( 0 \right)=0\) và \(h\left( 2 \right)=f\left( 4 \right)-4>0\) nên ta có bảng biến thiên của hàm \(y=h\left( x \right)\).
Từ bảng biến thiên ta có hàm số \(y=h\left( x \right)\) có một điểm cực trị và đồ thị hàm số \(y=h\left( x \right)\) cắt Ox tại hai điểm phân biệt ⇒ Hàm số \(y=g\left( x \right)=\left| h\left( x \right) \right|\) có ba điểm cực trị trong đó có hai điểm cực tiểu.