Cho hàm số \(f\left( x \right)\) có đạo hàm liên tục trên \(\mathbb{R}\) và hàm \(y = f'\left( x \right)\) có đồ thị như hình vẽ. Xét hàm số \(g\left( x \right) = f\left( {{x^2} - 5} \right)\). Khẳng định nào dưới đây khẳng định đúng?
Suy nghĩ trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo sai\(g\left( x \right) = f\left( {{x^2} - 5} \right) \Rightarrow g'\left( x \right) = 2x.f'\left( {{x^2} - 5} \right)\)
\(f'\left( {{x^2} - 5} \right) = 0 \Leftrightarrow \left[ \begin{array}{l}{x^2} - 5 = - 1\\{x^2} - 5 = 2\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = \pm 2\\x = \pm \sqrt 7 \end{array} \right.\)
Bảng xét dấu \(g'\left( x \right)\):
\( \Rightarrow \) Hàm số \(g\left( x \right)\) đồng biến trên khoảng \(\left( { - 2;0} \right)\): Là khẳng định đúng.
Chọn: B
Đề thi thử THPT QG năm 2022 môn Toán
Trường THPT Trần Quang Khải