Cho hàm số \(f\left( x \right) = {\left( {\sqrt x - {1 \over {\sqrt x }}} \right)^3}\) Hàm số có đạo hàm \(f'\left( x \right)\) bằng:
Suy nghĩ trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo sai\(\begin{array}{l}f\left( x \right) = {\left( {\sqrt x - \dfrac{1}{{\sqrt x }}} \right)^3}\\f'\left( x \right) = 3{\left( {\sqrt x - \dfrac{1}{{\sqrt x }}} \right)^2}\left( {\dfrac{1}{{2\sqrt x }} + \dfrac{1}{{2x\sqrt x }}} \right)\\ = \dfrac{3}{2}\left( {x - 2 + \dfrac{1}{x}} \right)\left( {\dfrac{1}{{2\sqrt x }} + \dfrac{1}{{2x\sqrt x }}} \right)\\ = \dfrac{3}{2}\left( {\sqrt x + \dfrac{1}{{\sqrt x }} - \dfrac{2}{{\sqrt x }} - \dfrac{2}{{x\sqrt x }} + \dfrac{1}{{x\sqrt x }} + \dfrac{1}{{{x^2}\sqrt x }}} \right)\\ = \dfrac{3}{2}\left( {\sqrt x - \dfrac{1}{{\sqrt x }} - \dfrac{1}{{x\sqrt x }} + \dfrac{1}{{{x^2}\sqrt x }}} \right)\end{array}\)
\(f\left( x \right) = {\left( {\sqrt x - \dfrac{1}{{\sqrt x }}} \right)^3}\)
Đề thi thử THPT QG năm 2021 môn Toán
Trường THPT Nguyễn Khuyến lần 2