Đề thi thử THPT QG năm 2021 môn Toán
Trường THPT Nguyễn Khuyến lần 2
-
Câu 1:
Trong một hộp bút gồm có 8 cây bút bi, 6 cây bút chì và 10 cây bút màu. Hỏi có bao nhiêu cách chọn ra một cây bút từ hộp bút đó?
-
Câu 2:
Cho cấp số cộng \(\left( {{u}_{n}} \right)\) với \({{u}_{9}}=5{{u}_{2}}\) và \({{u}_{13}}=2{{u}_{6}}+5.\) Khi đó số hạng đầu \({{u}_{1}}\) và công sai d bằng
-
Câu 3:
Cho hàm số \(y=f\left( x \right)\) có bảng biến thiên như sau
Hàm số đã cho đồng biến trên khoảng nào dưới đây?
-
Câu 4:
Cho hàm số \(y=f\left( x \right)\) có bảng biến thiên như sau:
Hàm số đã cho đạt cực tiểu tại điểm
-
Câu 5:
Cho hàm số g(x), bảng xét dấu của g'(x) như sau:
Số điểm cực trị của hàm số đã cho là
-
Câu 6:
Tiệm cận ngang của đồ thị hàm số \(y = \frac{{3x + 2}}{{x - 1}}\) là
-
Câu 7:
Hàm số nào dưới đây có đồ thị như hình vẽ bên dưới?
-
Câu 8:
Cho hàm số bậc bốn \(y=f(x)\) có đồ thị như hình vẽ
Số nghiệm của phương trình \(f(x)=-1\) là:
-
Câu 9:
Cho a, b là hai số dương bất kì. Mệnh đề nào sau đây là đúng?
-
Câu 10:
Cho hàm số \(y = {3^{x + 1}}\). Đẳng thức nào sau đây đúng?
-
Câu 11:
Với a là số thực dương tùy ý, \(\sqrt {{a^5}} \) bằng
-
Câu 12:
Tìm nghiệm của phương trình \({\log _{25}}(x + 1) = \frac{1}{2}\)
-
Câu 13:
Nghiệm của phương trình \({\log _3}\left( {x - 4} \right) = 2\) là
-
Câu 14:
Họ nguyên hàm của hàm số \(f\left( x \right) = 3{x^2} + 1\) là
-
Câu 15:
Biết \(\int{f\left( x \right)\,\text{d}x={{\text{e}}^{x}}+\sin x+C}\). Mệnh đề nào sau đây đúng?
-
Câu 16:
Cho hàm số \(f\left( x \right)\) liên tục trên \(\mathbb{R}\) và có \(\int\limits_{0}^{2}{f\left( x \right)}\text{d}x=9;\int\limits_{2}^{4}{f\left( x \right)}\text{d}x=4\). Tính \(I=\int\limits_{0}^{4}{f\left( x \right)}\text{d}x\)?
-
Câu 17:
Tích phân \(\int\limits_0^3 {(2x + 1)dx} \) bằng
-
Câu 18:
Cho \({{z}_{1}}=4-2i\). Hãy tìm phần ảo của số phức \({{z}_{2}}={{\left( 1-2i \right)}^{2}}+\overline{{{z}_{1}}}\).
-
Câu 19:
Cho hai số phức \({{z}_{1}}=4-3i\) và \({{z}_{2}}=7+3i\). Tìm số phức \(z={{z}_{1}}-{{z}_{2}}\)
-
Câu 20:
Cho số phức \(z=x+yi\left( x,y\in \mathbb{R} \right)\) có phần thực khác 0. Biết số phức \(w=i{{z}^{2}}+2\overline{z}\) là số thuần ảo. Tập hợp các điểm biểu diễn của z là một đường thẳng đi qua điểm nào dưới đây?
-
Câu 21:
Cho khối chóp có diện tích đáy B = 5 và chiều cao h = 6. Thể tích của khối chóp đã cho bằng
-
Câu 22:
Tính thể tích khối hộp chữ nhật có các kích thước b, 2b, 3b
-
Câu 23:
Một hội nghị bàn tròn có các phái đoàn gồm 3 người Anh, 5 người Pháp, 7 người Mỹ. Hỏi có bao nhiêu cách xếp chỗ ngồi cho các thành viên, sao cho những người có cùng quốc tịch thì ngồi gần nhau:
-
Câu 24:
Trong khai triển \({\left( {8{a^2} - \dfrac{1}{2}b} \right)^6}\) hệ số của số hạng chứa \({a^6}{b^3}\) là:
-
Câu 25:
Trong không gian với hệ trục tọa độ \(\text{Oxyz}\), cho ba điểm A(-1;0;0) , B(0;-2;0) và C(0;0;3) . Mặt phẳng đi qua ba điểm A,B,C có phương trình là
-
Câu 26:
Thể tích của khối cầu (S) có bán kính \(R=\frac{\sqrt{3}}{2}\) bằng
-
Câu 27:
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P):x-2y+z-5=0. Điểm nào dưới đây thuộc (P)?
-
Câu 28:
Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (P):2x+y-z-1=0 và (Q):x-2y-5=0. Khi đó giao tuyến của (P) và (Q) có một vectơ chỉ phương là
-
Câu 29:
Từ thành phố A đến thành phố B có 3 con đường, từ thành phố A đến thành phố C có 2 con đường, từ thành phố B đến thành phố D có 2 con đường, từ thành phố C đến thành phố D có 3 con đường, không có con đường nào nối từ thành phố C đến thành phố B. Hỏi có bao nhiêu con đường đi từ thành phố A đến thành phố D.
-
Câu 30:
Tiếp tuyến tại điểm \(M\left( {1;3} \right)\) cắt đồ thị hàm số \(y = {x^3} - x + 3\) tại điểm thứ hai khác \(M\)là \(N\) Tọa độ điểm \(N\) là:
-
Câu 31:
Cho hàm số \(f\left( x \right) = {\left( {\sqrt x - {1 \over {\sqrt x }}} \right)^3}\) Hàm số có đạo hàm \(f'\left( x \right)\) bằng:
-
Câu 32:
Cho hàm số \(y = f\left( x \right) = - {1 \over x}\) Xét hai mệnh đề:
(I): \(y'' = f''\left( x \right) = {2 \over {{x^3}}}\)
(II): \(y''' = f'''\left( x \right) = - {6 \over {{x^4}}}\)
Mệnh đề nào đúng?
-
Câu 33:
Nếu \(\int\limits_1^3 {f(x)dx} = 8\) thì \(\int\limits_1^3 {\left[ {\frac{1}{2}f\left( x \right) + 1} \right]dx} \) bằng
-
Câu 34:
Cho hai số phức \({{z}_{1}}=2-3i{{,}^{{}}}{{z}_{2}}=1+i.\) Tìm số phức \(z={{z}_{1}}+{{z}_{2}}\).
-
Câu 35:
Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B,\(BC=a\sqrt{3}\),AC=2a.Cạnh bên SA vuông góc với mặt phẳng đáy và \(SA=a\sqrt{3}\). Góc giữa đường thẳng SB và mặt phẳng đáy bằng
-
Câu 36:
Cho hình chóp S. ABCD có đáy ABCD là hình vuông cạnh a, \(SA \bot \left( {ABCD} \right)\), SD = 2a. Gọi \(\alpha \) là góc giữa SC và mp (ABCD). Chọn khẳng định đúng trong các khẳng định sau ?
-
Câu 37:
Trong không gian Oxyz, cho mặt cầu (S): (x-1)2+(y+1)2+z2 = 9. Bán kính của mặt cầu đã cho bằng
-
Câu 38:
Trong không gian Oxyz, cho hai điểm \(A\left( 2\,;\,3\,;\,1 \right)\) và \(B\left( 5\,;\,2\,;\,-3 \right)\). Đường thẳng AB có phương trình tham số là:
-
Câu 39:
Cho hàm số y = f(x) có đồ thị như hình bên.
Giá trị lớn nhất của hàm số này trên đoạn [-2;3] bằng:
-
Câu 40:
Có tất cả bao nhiêu giá trị nguyên dương của x thỏa mãn bất phương trình \({8^x}{.2^{1 - {x^2}}} > {\left( {\sqrt 2 } \right)^{2x}}\)
-
Câu 41:
Cho hàm số \(y=f\left( x \right)\) liên tục và thoả mãn \(f\left( x \right)+2f\left( \frac{1}{x} \right)=3x\) với \(x\in \left[ \frac{1}{2};2 \right]\). Tính \(\int\limits_{\frac{1}{2}}^{2}{\frac{f\left( x \right)}{x}\text{d}x}\).
-
Câu 42:
Cho số phức z thỏa mãn \(\left| z \right|=1\). Tìm giá trị lớn nhất của biểu thức \(A=\left| 1+\frac{5i}{2} \right|\)
-
Câu 43:
Cho khối chóp S.ABC có đáy là tam giác ABC cân tại A, \(\widehat{BAC}=120{}^\circ , AB=a\). Cạnh bên SA vuông góc với mặt đáy, SA=a. Thể tích khối chóp đã cho bằng
-
Câu 44:
Một ô tô bắt đầu chuyển động nhanh dần đều với vận tốc \({{v}_{1}}\left( t \right)=7t\left( \text{m/s} \right)\). Đi được \(5\left( \text{s} \right)\), người lái xe phát hiện chướng ngại vật và phanh gấp, ô tô tiếp tục chuyển động chậm dần đều với gia tốc \(a=-70\left( \text{m/}{{\text{s}}^{\text{2}}} \right)\). Tính quãng đường \(S\left( \text{m} \right)\) đi được của ô tô từ lúc bắt đầu chuyển bánh cho đến khi dừng hẳn.
-
Câu 45:
Cho hình hộp \(ABCD.A'B'C'D'\). Gọi \(M\) là trung điểm của \(AB\), mặt phẳng \(\left( {MA'C'} \right)\) cắt hình hộp \(ABCD.A'B'C'D'\) theo thiết diện là hình gì?
-
Câu 46:
Cho hàm số \(y=f\left( x \right)\) liên tục và có bảng biến thiên trên \(\mathbb{R}\) như hình vẽ bên dưới
Tìm giá trị lớn nhất của hàm số \(y=f\left( \cos x \right)\)
-
Câu 47:
Tìm tất cả các giá trị của tham số m để phương trình \({{4}^{\sin x}}+{{2}^{1+\sin x}}-m=0\) có nghiệm.
-
Câu 48:
Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình bình hành. Gọi \(d\) là giao tuyến của hai mặt phẳng \(\left( {SAD} \right)\) và \(\left( {SBC} \right)\). Khẳng định nào sau đây là đúng?
-
Câu 49:
Biết số phức z thỏa mãn đồng thời hai điều kiện \(\left| z-3-4i \right|=\sqrt{5}\) và biểu thức \(M={{\left| z+2 \right|}^{2}}-{{\left| z-i \right|}^{2}}\) đạt giá trị lớn nhất. Tính môđun của số phức z+i.
-
Câu 50:
Trong không gian Oxyz, cho các mặt phẳng \(\left( P \right):x-y+2z+1=0, \left( Q \right):2x+y+z-1=0\). Gọi \(\left( S \right)\) là mặt cầu có tâm thuộc trục hoành, đồng thời \(\left( S \right)\) cắt mặt phẳng \(\left( P \right)\) theo giao tuyến là một đường tròn có bán kính 2 và \(\left( S \right)\) cắt mặt phẳng \(\left( Q \right)\) theo giao tuyến là một đường tròn có bán kính r. Xác định r sao cho chỉ có đúng một mặt cầu \(\left( S \right)\) thỏa mãn yêu cầu.