Cho hàm số \(f\left( x \right)={{x}^{3}}+a{{x}^{2}}+bx+c\). Nếu phương trình \(f\left( x \right)=0\) có ba nghiệm phân biệt thì phương trình \(2f\left( x \right).f''\left( x \right)={{\left[ f'\left( x \right) \right]}^{2}}\) có nhiều nhất bao nhiêu nghiệm?
Suy nghĩ trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiXét đa thức bậc bốn \(g\left( x \right)=2f\left( x \right).f''\left( x \right)-{{\left( f'\left( x \right) \right)}^{2}}\). Ta có \(g'\left( x \right)=2f\left( x \right).f'''\left( x \right)=12f\left( x \right)\)
Vì \(g'\left( x \right)=0\) có ba nghiệm phân biệt nên \(g\left( x \right)=0\) có tối đa bốn nghiệm
Vậy phương trình \(2f\left( x \right).f''\left( x \right)={{\left[ f'\left( x \right) \right]}^{2}}\) có tối đa bốn nghiệm. Giả sử \({{x}_{1}}<{{x}_{2}}<{{x}_{3}}\) là ba nghiệm của \(f\left( x \right)=0\). Mà các nghiệm này đều phân biệt nên ta có \(f'\left( {{x}_{1}} \right),\,f'\left( {{x}_{2}} \right),\,f'\left( {{x}_{3}} \right)\) đều khác 0. Ta có
Nhận thấy
\(\begin{align} & g\left( {{x}_{1}} \right)=2f\left( {{x}_{1}} \right).f''\left( {{x}_{1}} \right)-{{\left( f'\left( {{x}_{1}} \right) \right)}^{2}}=-{{\left( f'\left( {{x}_{1}} \right) \right)}^{2}}<0 \\ & g\left( {{x}_{2}} \right)=2f\left( {{x}_{2}} \right).f''\left( {{x}_{2}} \right)-{{\left( f'\left( {{x}_{2}} \right) \right)}^{2}}=-{{\left( f'\left( {{x}_{2}} \right) \right)}^{2}}<0 \\ & g\left( {{x}_{3}} \right)=2f\left( {{x}_{3}} \right).f''\left( {{x}_{3}} \right)-{{\left( f'\left( {{x}_{3}} \right) \right)}^{2}}=-{{\left( f'\left( {{x}_{3}} \right) \right)}^{2}}<0 \\ \end{align}\)
Nên từ bảng biến thiên suy ra phương trình \(g\left( x \right)=0\) có đúng hai nghiệm phân biệt. Do đó phương trình \(2f\left( x \right).f''\left( x \right)={{\left[ f'\left( x \right) \right]}^{2}}\) có đúng hai nghiệm phân biệt.