Tìm m để hàm số \(y=x+\sqrt{4-{{x}^{2}}}+m\) có giá trị lớn nhất bằng \(3\sqrt{2}\)
Suy nghĩ trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiTập xác định của hàm số \(y=x+\sqrt{4-{{x}^{2}}}+m$ là \(D=\left[ -2;2 \right]\)
Ta có \(y'=\frac{\sqrt{4-{{x}^{2}}}-x}{\sqrt{4-{{x}^{2}}}}\);
\(y'=0\Leftrightarrow \sqrt{4-{{x}^{2}}}-x=0\Leftrightarrow \sqrt{4-{{x}^{2}}}=x\Leftrightarrow \left\{ \begin{align} & x\ge 0 \\ & 4-{{x}^{2}}={{x}^{2}} \\ \end{align} \right.\Leftrightarrow x=\sqrt{2}\)
Tính được \(y\left( \sqrt{2} \right)=m+2\sqrt{2},\,\,y\left( -2 \right)=m-2\) và \(y\left( 2 \right)=m+2\)
Để ý rằng \(m-2<m+2<m+2\sqrt{2}\) nên \(\underset{\left[ -2;2 \right]}{\mathop{\max }}\,y=m+2\sqrt{2}\Leftrightarrow m+2\sqrt{2}=3\sqrt{2}\Leftrightarrow m=\sqrt{2}\)