Cho hàm số \(f(x)=a{{x}^{4}}+b{{x}^{3}}+c{{x}^{2}}+dx+e\). Hàm số \(y={f}'(x)\) có đồ thị như hình vẽ. Trong các khẳng định sau, khẳng định nào đúng?
Chính xác
Xem lời giải
Suy nghĩ trả lời câu hỏi trước khi xem đáp án
ATNETWORK
Chủ đề: Đề thi THPT QG
Môn: Toán
Lời giải:
Báo saiTheo đồ thị ta có \({f}'(0)=0\Leftrightarrow d=0\) và hệ số a<0.
Xét \(\int\limits_{-1}^{0}{{f}'(x)dx}=f(x)\left| _{-1}^{0} \right.=-a+b-c+d\), mà \(\int\limits_{-1}^{0}{{f}'(x)dx}<0\) nên ta có -a+b-c+d<0(1)
Hay a+c>b+d. Do đó ta loại C.
Thay d=0 ta có a>b-c, vì a<0 nên b-c<0. Loại D.
Xét \(\int\limits_{0}^{1}{{f}'(x)dx}=f(x)\left| _{0}^{1} \right.=a+b+c+d\), mà \(\int\limits_{0}^{1}{{f}'(x)dx}>0\) nên ta có a+b+c+d>0(2).
Do đó ta loại B.
Từ (2) ta có -a-b-c-d<0 cộng từng vế với (1) ta có a+c>0
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
Đề thi thử THPT QG năm 2021 môn Toán
Trường THPT Nguyễn Tất Thành lần 2
13/11/2024
312 lượt thi
0/50
Bắt đầu thi
ADMICRO
YOMEDIA
ZUNIA9