Cho hàm số y = f(x) có đạo hàm liên tục trên đoạn [0;1] và thỏa mãn f(0) = 0. Biết \(\int\limits_0^1 {{f^2}\left( x \right)dx} = \frac{9}{2}\) và \(\int\limits_0^1 {f'\left( x \right)\cos \frac{{\pi x}}{2}dx} = \frac{{3\pi }}{4}\). Tích phân \(\int\limits_0^1 {f\left( x \right)dx} \) bằng.
Suy nghĩ trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiĐặt: \(\left\{ \begin{array}{l} u = \cos \frac{{\pi x}}{2}\\ dv = f'\left( x \right)dx \end{array} \right. \Rightarrow \left\{ \begin{array}{l} du = - \frac{\pi }{2}\sin \frac{{\pi x}}{2}dx\\ v = f\left( x \right) \end{array} \right.\)
\(\begin{array}{l} \Rightarrow \int\limits_0^1 {f'\left( x \right)\cos \frac{{\pi x}}{2}dx} = \left. {\cos \frac{{\pi x}}{2}f\left( x \right)} \right|_0^1 + \frac{\pi }{2}\int\limits_0^1 {f\left( x \right)\sin \frac{{\pi x}}{2}dx} \\ = f\left( 1 \right).\cos \frac{\pi }{2} - f\left( 0 \right).\cos 0 + \frac{\pi }{2}\int\limits_0^1 {f\left( x \right)\sin \frac{{\pi x}}{2}dx} \\ = \frac{\pi }{2}\int\limits_0^1 {f\left( x \right)\sin \frac{{\pi x}}{2}dx} = \frac{{3\pi }}{4} \Rightarrow \int\limits_0^1 {f\left( x \right)\sin \frac{{\pi x}}{2}dx} = \frac{3}{2} \end{array}\)
Xét tích phân
\(\begin{array}{l} \int\limits_0^1 {{{\left[ {f\left( x \right) + k\sin \frac{{\pi x}}{2}} \right]}^2}dx} = 0 \Leftrightarrow \int\limits_0^1 {\left[ {{f^2}\left( x \right) + 2kf\left( x \right)\sin \frac{{\pi x}}{2} + {k^2}{{\sin }^2}\frac{{\pi x}}{2}} \right]dx} = 0\\ \Leftrightarrow \int\limits_0^1 {{f^2}\left( x \right)dx} + 2k\int\limits_0^1 {f\left( x \right)\sin \frac{{\pi x}}{2}} + {k^2}\int\limits_0^1 {{{\sin }^2}\frac{{\pi x}}{2}dx} = 0\\ \Leftrightarrow \frac{9}{2} + 2k\frac{3}{2} + \frac{1}{2}{k^2} = 0\\ \Leftrightarrow k = - 3 \end{array}\)
Khi đó ta có \(\int\limits_0^1 {{{\left[ {f\left( x \right) - 3\sin \frac{{\pi x}}{2}} \right]}^2}dx} = 0 \Leftrightarrow f\left( x \right) - 3\sin \frac{{\pi x}}{2} = 0 \Leftrightarrow f\left( x \right) = 3\sin \frac{{\pi x}}{2}\)
Vậy \(\int\limits_0^1 {f\left( x \right)dx} = 3\int\limits_0^1 {\sin \frac{{\pi x}}{2}dx = - 3\frac{{\cos \frac{{\pi x}}{2}}}{{\frac{\pi }{2}}}\left| {\begin{array}{*{20}{c}} {^1}\\ {_0} \end{array}} \right. = \frac{{ - 6}}{\pi }\cos \frac{{\pi x}}{2}} \left| {\begin{array}{*{20}{c}} {^1}\\ {_0} \end{array}} \right. = - \frac{6}{\pi }\left( {\cos \frac{\pi }{2} - \cos 0} \right) = \frac{6}{\pi }\)
Đề thi thử THPT QG năm 2021 môn Toán
Trường THPT Nam Sài Gòn