Cho hàm số \(y=f(x)\). Đồ thị hàm số \(y = f'\left( x \right)\) như hình vẽ. Đặt \(g\left( x \right) = 3f\left( x \right) - {x^3} + 3x - m\), với m là tham số thực. Điều kiện cần và đủ để bất phương trình \(g\left( x \right) \ge 0\) nghiệm đúng với \(\forall x \in \left[ { - \sqrt 3 ;\sqrt 3 } \right]\) là
Suy nghĩ trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiTa có: \(g\left( x \right) = 3f\left( x \right) - {x^3} + 3x - m \ge 0 \Leftrightarrow 3f\left( x \right) - {x^3} + 3x \ge m\)
Điều kiện bài toán trở thành tìm m để \(3f\left( x \right) - {x^3} + 3x \ge m,\forall x \in \left[ { - \sqrt 3 ;\sqrt 3 } \right]\).
Xét hàm \(h\left( x \right) = 3f\left( x \right) - {x^3} + 3x\) trên đoạn \(\left[ { - \sqrt 3 ;\sqrt 3 } \right]\) ta có:
\(h'\left( x \right) = 3f'\left( x \right) - 3{x^2} + 3 = 3\left( {f'\left( x \right) - {x^2} + 1} \right) = 0 \Leftrightarrow f'\left( x \right) = {x^2} - 1\)
Dựng đồ thị hàm số \(y = {x^2} - 1\) cùng một hệ trục tọa độ với đồ thị hàm số \(y = f'\left( x \right)\) bài cho ta được:
Xét trên đoạn \(\left( { - \sqrt 3 ;\sqrt 3 } \right)\) thì \(f'\left( x \right) \ge {x^2} - 1,\forall x \in \left[ { - \sqrt 3 ;\sqrt 3 } \right]\).
Do đó \(f'\left( x \right) - {x^2} + 1 \ge 0,\forall x \in \left[ { - \sqrt 3 ;\sqrt 3 } \right]\) hay hàm số \(y=h(x)\) đồng biến trên \(\left[ { - \sqrt 3 ;\sqrt 3 } \right]\).
Suy ra \(h\left( { - \sqrt 3 } \right) \le h\left( x \right) \le h\left( {\sqrt 3 } \right)\) hay \(3f\left( { - \sqrt 3 } \right) \le h\left( x \right) \le 3f\left( {\sqrt 3 } \right)\).
Điều kiện bài toán thỏa \( \Leftrightarrow m \le \mathop {\min }\limits_{\left[ { - \sqrt 3 ;\sqrt 3 } \right]} h\left( x \right) = h\left( { - \sqrt 3 } \right) = 3f\left( { - \sqrt 3 } \right)\).
Vậy \(m \le 3f\left( { - \sqrt 3 } \right)\).
Đề thi thử THPT QG môn Toán năm 2019
Sở GD & ĐT Bạc Liêu lần 2