Cho hàm số y = f(x) liên tục trên R và có đồ thị như hình vẽ. Hỏi hàm số y = f(f(x)) có bao nhiêu điểm cực trị?
Suy nghĩ trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo sai* Từ đồ thị hàm số y = f(x) nhận thấy
+) \(f'\left( x \right) = 0 \Leftrightarrow \left\{ \begin{array}{l} x = a\\ x = 2\\ x = b \end{array} \right.\) với \(0 < {x_0} < a < 2 < b < 3\).
+) \(f'\left( x \right) > 0 \Leftrightarrow a < x < 2\) hoặc x > b.
+) \(f'\left( x \right) < 0 \Leftrightarrow x < a\) hoặc 2 < x < b.
* Ta có : \(y = f\left( {f\left( x \right)} \right) \Rightarrow y' = f'\left( {f\left( x \right)} \right).f'\left( x \right)\).
\(y' = 0 \Leftrightarrow \left[ \begin{array}{l} f'\left( {f\left( x \right)} \right) = 0\\ f'\left( x \right) = 0 \end{array} \right.\)
* Phương trình \(f'\left( {f\left( x \right)} \right) = 0 \Leftrightarrow \left[ \begin{array}{l} f\left( x \right) = a\\ f\left( x \right) = 2\\ f\left( x \right) = b \end{array} \right.\) với \(0 < {x_0} < a < 2 < b < 3\).
Mỗi đường thẳng y = b, y = 2, y = a đều cắt đồ thị hàm số đã cho tại 2 điểm phân biệt lần lượt tính từ trái qua phải có hoành độ là x1 và x6; x2 và x5; x3 và x4 nên: \(\left\{ \begin{array}{l} {x_1} < {x_2} < {x_3} < {x_0} < 3 < {x_4} < {x_5} < {x_6}\\ f\left( {{x_1}} \right) = f\left( {{x_6}} \right) = b\\ f\left( {{x_2}} \right) = f\left( {{x_5}} \right) = 2\\ f\left( {{x_3}} \right) = f\left( {{x_4}} \right) = a \end{array} \right.\)
* Cũng từ đồ thị hàm số đã cho suy ra:
Do đó: \(f'\left( {f\left( x \right)} \right) > 0 \Leftrightarrow a < f\left( x \right) < 2\) hoặc f(x) > b.
Ta có BBT:
Vậy hàm số có 9 điểm cực trị.