Cho hàm số \(y = {\log _{\frac{1}{2}}}\left| x \right|.\) Mệnh đề nào dưới đây là mệnh đề sai?
Chính xác
Xem lời giải
Suy nghĩ trả lời câu hỏi trước khi xem đáp án
ATNETWORK
Chủ đề: Đề thi THPT QG
Môn: Toán
Lời giải:
Báo saiTập xác định của hàm số: \(\left| x \right| > 0 \Leftrightarrow x \ne 0 \Rightarrow \) đáp án D đúng.
Ta có:\(y = {\log _{\frac{1}{2}}}\left| x \right| = \left\{ \begin{array}{l}{\log _{\frac{1}{2}}}x\;\;\;khi\;\;x > 0\\{\log _{\frac{1}{2}}}\left( { - x} \right)\;\;\;khi\;\;x < 0\end{array} \right.\)
Vì \(0 < a = \dfrac{1}{2} < 1 \Rightarrow \) hàm số \(y = {\log _{\frac{1}{2}}}x\) nghịch biến trên \(\left( {0; + \infty } \right)\) và hàm số \(y = {\log _{\frac{1}{2}}}\left( { - x} \right)\) đồng biến trên \(\left( { - \infty ;\;0} \right).\)
Chọn A.
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
Đề thi thử THPT QG năm 2022 môn Toán
Trường THPT Trần Khai Nguyên
26/11/2024
33 lượt thi
0/50
Bắt đầu thi
ADMICRO
YOMEDIA
ZUNIA9