Có bao nhiêu giá trị nguyên của tham số m để bất phương trình \(\log \left( {2{x^2} + 3} \right) < \log \left( {{x^2} + mx + 1} \right)\) có tập nghiệm là \(R.\)
Chính xác
Xem lời giải
Suy nghĩ trả lời câu hỏi trước khi xem đáp án
ATNETWORK
Chủ đề: Đề thi THPT QG
Môn: Toán
Lời giải:
Báo sai\(\begin{array}{l}\log \left( {2{x^2} + 3} \right) < \log \left( {{x^2} + mx + 1} \right)\,\,\forall x \in R\\ \Leftrightarrow 0 < 2{x^2} + 3 < {x^2} + mx + 1 \Leftrightarrow {x^2} - mx + 2 < 0\;\;\,\,\forall x \in R\,\,\left( * \right)\\ \Leftrightarrow \left\{ \begin{array}{l}a = 1 < 0\\\Delta = {m^2} - 8 < 0\end{array} \right.\,\,\left( {Vo\,\,nghiem} \right)\end{array}\)
Vậy không có giá trị nào của m thỏa mãn yêu cầu bài toán.
Chọn D.
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
Đề thi thử THPT QG năm 2022 môn Toán
Trường THPT Trần Khai Nguyên
26/11/2024
33 lượt thi
0/50
Bắt đầu thi
ADMICRO
YOMEDIA
ZUNIA9